A method for discovering transmembrane beta-barrel proteins in Gram-negative bacterial proteomes. (English) Zbl 1158.92015

Summary: Transmembrane \(\beta \)-barrel (TMB) proteins play pivotal roles in many aspects of bacterial functions. This paper presents a \(k\)-nearest neighbor (\(K\)-NN) method for discriminating TMB and non-TMB proteins. We start with a method that makes predictions based on a distance computed from residue compositions and gradually improves the prediction performance by including homologous sequences and searching for a set of residues and di-peptides for calculating the distance. The final method achieves an accuracy of 97.1%, with 0.876 MCC, 86.4% sensitivity and 98.8% specificity. A web server based on the proposed method is available at http://yanbioinformatics.cs.usu.edu:8080/TMBKNNsubmit.


92C40 Biochemistry, molecular biology
62P10 Applications of statistics to biology and medical sciences; meta analysis
Full Text: DOI


[1] Altschul, S.; Madden, T.; Schaffer, A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucl. acids res., 25, 3389-3402, (1997)
[2] Bagos, P.; Liakopoulos, T.; Hamodrakas, S., Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method, BMC bioinformatics, 6, 7, (2005)
[3] Bagos, P.G.; Liakopoulos, T.D.; Spyropoulos, I.C.; Hamodrakas, S.J., PRED-TMBB: a web server for predicting the topology of beta-barrel outer membrane proteins, Nucl. acids res., 32, W400-W404, (2004)
[4] Baldi, P.; Brunak, S.; Chauvin, Y.; Andersen, C.A.F., Assessing the accuracy of prediction algorithms for classification: an overview, Bioinformatics, 16, 412-424, (2000)
[5] Berven, F.S.; Flikka, K.; Jensen, H.B.; Eidhammer, I., BOMP: a program to predict integral beta-barrel outer membrane proteins encoded within genomes of Gram-negative bacteria, Nucl. acids res., 32, W394-W399, (2004)
[6] Bigelow, H.; Rost, B., Proftmb: a web server for predicting bacterial transmembrane beta barrel proteins, Nucl. acids res., 34, W186-W188, (2006)
[7] Gardy, J.L.; Laird, M.R.; Chen, F.; Rey, S.; Walsh, C.J.; Ester, M.; Brinkman, F.S.L., Psortb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis, Bioinformatics, 21, 617-623, (2005)
[8] Garrow, A.; Agnew, A.; Westhead, D., TMB-hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins, BMC bioinformatics, 6, 56, (2005)
[9] Garrow, A.G.; Agnew, A.; Westhead, D.R., TMB-hunt: a web server to screen sequence sets for transmembrane beta-barrel proteins, Nucl. acids res., 33, W188-W192, (2005)
[10] Gnanasekaran, T.V.; Peri, S.; Arockiasamy, A.; Krishnaswamy, S., Profiles from structure based sequence alignment of porins can identify beta stranded integral membrane proteins, Bioinformatics, 16, 839-842, (2000)
[11] Koebnik, R.; Locher, K.P.; Van Gelder, P., Structure and function of bacterial outer membrane proteins: barrels in a nutshell, Mol. microbiol., 37, 239-253, (2000)
[12] Krogh, A.; Larsson, B.; Heijne, G.v.; Sonnhammer, E.L.L., Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes, J. mol. biol., 305, 567-580, (2001)
[13] Liu, Q.; Zhu, Y.; Wang, B.; Li, Y., Identification of beta-barrel membrane proteins based on amino acid composition properties and predicted secondary structure, Comp. biol. chem., 27, 355-361, (2003)
[14] Murzin, A.G.; Brenner, S.E.; Hubbard, T.; Chothia, C., SCOP: a structural classification of proteins database for the investigation of sequences and structures, J. mol. biol., 247, 536-540, (1995)
[15] Rey, S.; Acab, M.; Gardy, J.L.; Laird, M.R.; deFays, K.; Lambert, C.; Brinkman, F.S.L., Psortdb: a protein subcellular localization database for bacteria, Nucl. acids res., 33, D164-D168, (2005)
[16] Saier, M.H.; Tran, C.V.; Barabote, R.D., TCDB: the transporter classification database for membrane transport protein analyses and information, Nucl. acids res., 34, D181-D186, (2006)
[17] Schleiff, E.; Eichacker, L.A.; Eckart, K.; Becker, T.; Mirus, O.; Stahl, T.; Soll, J., Prediction of the plant beta-barrel proteome: a case study of the chloroplast outer envelope, Protein sci., 12, 748-759, (2003)
[18] Schulz, G.E., Beta-barrel membrane proteins, Curr. opin. struct. biol., 10, 443-447, (2000)
[19] Wimley, W.C., The versatile beta-barrel membrane protein, Curr. opin. struct. biol., 13, 404-411, (2003)
[20] Witten, I.H.; Frank, E., Data mining: practical machine learning tools and techniques, (2005), Morgan Kaufmann San Francisco · Zbl 1076.68555
[21] Zhai, Y.; Saier, M.H.J.R., The beta-barrel finder (BBF) program, allowing identification of outer membrane beta-barrel proteins encoded within prokaryotic genomes, Protein sci., 11, 2196-2207, (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.