zbMATH — the first resource for mathematics

Boundary limits of Green potentials in the unit disc. (English) Zbl 0553.31003
We prove the following: let \(\mu\) be a positive Borel measure on the open unit disc D such that \(\log | z| \in L^ 1(\mu)\) and let U(z) be the positive superharmonic function on D given by \(U(z)=\int_{D}| (1-z\xi)/(z-\xi)| d\mu (\xi).\) If \(\gamma\) : [0,1)\(\to D\) is any curve with \(\lim_{t\to 1}\gamma (t)=1\), then \(\lim \inf_{t\to 1}(1- | \gamma (t)|)U(\gamma (t)e^{i\theta})=0\) for all \(\theta\), \(0\leq \theta <2\pi\).

31A20 Boundary behavior (theorems of Fatou type, etc.) of harmonic functions in two dimensions
30D50 Blaschke products, etc. (MSC2000)
Full Text: DOI
[1] J. B.Garnett, Bounded Analytic Functions. New York 1981. · Zbl 0469.30024
[2] M. Heins, The minimum modulus of a bounded analytic function. Duke Math. J.14, 179-215 (1947). · Zbl 0030.05001 · doi:10.1215/S0012-7094-47-01416-6
[3] J. E. Littlewood, On functions subharmonic in a circle, II. Proc. London Math. Soc.28, 383-394 (1929). · JFM 54.0516.04 · doi:10.1112/plms/s2-28.1.383
[4] W. Nestlerode andM. Stoll, Radial limits ofn-subharmonic functions in the polydisc. Trans. Amer. Math. Soc.279, 691-703 (1983). · Zbl 0552.31004
[5] J. H. Shapiro andA. L. Shields, Unusual topological properties of the Nevanlinna class. Amer. J. Math.97, 915-936 (1976). · Zbl 0323.30033 · doi:10.2307/2373681
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.