An intrinsic characterization of Kähler manifolds. (English) Zbl 0553.32008

The authors give the following characterization of Kähler manifolds: if a compact complex manifold carries no positive (1,1)-components of boundaries, then the manifold supports a Kähler metric. They examine the extent to which the condition of being Kähler persists under twisted products. The result is substantially strengthened for an elliptic surface.
Reviewer: S.S.Singh


32Q99 Complex manifolds
32J99 Compact analytic spaces
53C55 Global differential geometry of Hermitian and Kählerian manifolds
Full Text: DOI EuDML


[1] Bombieri, E., Husemoller, D.: Classification and embeddings of surfaces. Proc. of Symp. in Pure Math. AMS29, 329-420 (1975) · Zbl 0326.14009
[2] Federer, H.: Geometric measure theory. Berlin-Heidelberg-New York: Springer 1967 · Zbl 0176.00801
[3] Gunning, R.C., Rossi, H.: Analytic functions of several complex variables. Englewood Cliffs, N.J.: Prentice-Hall 1965 · Zbl 0141.08601
[4] Harvey, R.: Holomorphic chains and their boundaries. Proc. Symp. Pure Math.30, Part I, AMS, Providence, R.I. (1977), pp. 309-382 · Zbl 0374.32002
[5] Harvey, R., Knapp, A.W.: Positivep, p forms, Wirtinger’s inequality, and currents. Proc. Tulane Conf. on Value Distributions, Part A, pp. 49-62. New York: Marcel Dekker 1973
[6] Harvey, R., Lawson, Jr., H.B.: Calibrated foliations. Amer. J. Math.104, 607-643 (1982) · Zbl 0508.57021
[7] Harvey, R., Lawson, Jr., H.B.: Calibrated geometries. Acta Math.148, 47-157 (1982) · Zbl 0584.53021
[8] Kodaira, K.: On the structure of compact complex analytic surfaces, I. Amer. J. Math.86, 751-798 (1964) · Zbl 0137.17501
[9] Michelsohn, M.L.: On the existence of special metrics in complex geometry. Acta Math.143, 261-295 (1983) · Zbl 0531.53053
[10] Miyaoka, Y.: Kähler metrics on elliptic surfaces. Proc. Japan Acad.50, 533-536 (1974) · Zbl 0354.32011
[11] Morrow, J., Kodaira, K.: Complex manifolds. New York: Holt-Rinehart and Winston 1971 · Zbl 0325.32001
[12] Schaefer, H.H.: Topological vector spaces. Berlin-Heidelberg-New York: Springer 1971 · Zbl 0212.14001
[13] Siu, Y.-T.: EveryK3 surface is Kähler. Invent. Math. (to appear) · Zbl 0557.32004
[14] Sullivan, D.: Cycles for the dynamical study of foliated manifolds and complex manifolds. Invent. Math.36, 225-255 (1976) · Zbl 0335.57015
[15] Todorov, A.N.: Applications of the Kähler-Einstein-Calabi-Yau metric to moduli ofK3 surfaces. Invent. Math.61, 251-265 (1980) · Zbl 0472.14006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.