×

On constrained multivariate splines and their approximations. (English) Zbl 0553.41028

The variational formulation of multivariate spline functions is generalized to include cases where the function has to satisfy inequality constraints such as positivity and convexity. The author gives condition for existence and uniqueness of a solution, and shows that an approximation to the solution can be obtained by solving the variational problem in a finite dimensional subspace. Both for interpolation and smoothing problems conditions for convergence and error estimates of the approximations are given. Two special examples, as ”volume matching” problem and ”the one-sided thin plate spline”, are given as an illustration of the general theory.
Reviewer: A.Bleyer

MSC:

41A29 Approximation with constraints
41A15 Spline approximation
65N15 Error bounds for boundary value problems involving PDEs
41A63 Multidimensional problems
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Ahlberg, J.H., Nilson, E.N., Walsh, J.L.: The Theory of Splines and their Applications. New York, London: Academic Press 1967 · Zbl 0158.15901
[2] Anselone, P.M., Laurent, P.J.: A General Method for the Construction of Interpolating or Smoothing Spline Functions. Numer. Math.12, 66-82 (1968) · Zbl 0197.13501 · doi:10.1007/BF02170998
[3] Atteia, M.: Generalisation de la définition et des propriétés des ?spline-fonction?. C.R. Acad. Sci. Paris260, 3550-3553 (1965) · Zbl 0163.37703
[4] Aubin, J.P.: Approximation of Elliptic Boundary-Value Problems. New York, Wiley-Interscience 1972 · Zbl 0248.65063
[5] Brezzi, F., Hager, W.W., Raviart, P.A.: Error Estimates for the Finite Element Solution of Variational Inequalities. Part I?Primary Theory. Numer. Math.28, 431-433 (1977) · Zbl 0369.65030 · doi:10.1007/BF01404345
[6] Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. Amsterdam: North-Holland 1978 · Zbl 0383.65058
[7] Cryer, C.W.: The Solution of a Quadratic Programming Problem Using Systematic Over-Relaxation. SIAM J. Control9, 385-392 (1971) · Zbl 0216.54603 · doi:10.1137/0309028
[8] Dahmen, W.: Approximation by linear combination of multivariateB-splines. J. Approximation Theory,31, 299-324 (1981) · Zbl 0487.41012 · doi:10.1016/0021-9045(81)90100-3
[9] DeBoor, C.: A Practical Guide to Splines. Berlin, Heidelberg, New York: Springer 1978
[10] DeBoor, C., Höllig, K.:B-splines from parallelepipeds. MRC report No. 2320, Madison: University of Wisconsin 1982
[11] Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plagues minces. RAIRO-Analyse Numerique10, 5-12 (1976)
[12] Dyn, N., Ferguson, W.: Numerical Construction of Smooth Surfaces from Aggregated Data. MRC Report No. 2129, Madison: University of Wisconsin 1980
[13] Dyn, N., Levin, D.: Construction of Surface Spline Interpolants of Scattered Data over Finite Domains. RAIRO-Analyse Numérique Vol. 16, No. 3, 201-209 (1982) · Zbl 0481.65007
[14] Dyn, N., Wong, W.H.: On the Solution of a Constrained Minimization Problem inH?(?) Related to Density Estimation. MRC Technical Report No. 2227, Madison: University of Wisconsin 1981
[15] Ekeland, I., Teman, R.: Convex Analysis and Variational Problems. Amsterdam: North-Holland 1976
[16] Falk, R.S.: Error Estimates for the Approximation of a Class of Variational Inequalities. Math. Comput.28, 963-971 (1974) · Zbl 0297.65061 · doi:10.1090/S0025-5718-1974-0391502-8
[17] Glowinski, R., Lions, J.L., Trémolières, R.: Numerical Analysis of Variational Inequalities. Amsterdam: North-Holland 1981
[18] Hager, W.W.: Inequalities and Approximations. Constructive Approaches to Mathematical Models. C.V. Coffman, G.J. Fix (eds.). New York, London: Academic Press 1979
[19] Hettich, R. (ed.): Semi-infinite Programming. Berlin, Heidelberg, New York: Springer 1979 · Zbl 0406.90063
[20] Mangasarian, O.L., Schumaker, L.L.: Splines via Optimal Control. Approximations with Special Emphasis on Spline Functions. I.J. Schoenberg, (ed.), pp. 119-156. New York, London: Academic Press 1969 · Zbl 0268.49026
[21] Meinguet, J.: Basic Mathematical Aspects of Surface Spline Interpolation. Rapport no 121, Séminaire de mathématique applique et mécanique, Université Catholique de Louvain 1979
[22] Tobler, W.R.: Smooth Pycnophylactic Interpolation for Geographical Regions. J. Amer. Statist. Assoc.74, 519-530 (1979) · doi:10.2307/2286968
[23] Wahba, G.: On the Minimization of a Quadratic Functional Subject to a Continuous Family of Linear Inequality Constraints. SIAM J. Control11, 64-79 (1973) · Zbl 0254.49037 · doi:10.1137/0311005
[24] Wright, I.W., Wegman, E.J.: Isotonic, Convex and Related Splines. Ann. Statist.8, 1023-1035 (1980) · Zbl 0453.62036 · doi:10.1214/aos/1176345140
[25] Zlámal, M.: On the Finite Element Method. Numer. Math.12, 394-409 (1968) · Zbl 0176.16001 · doi:10.1007/BF02161362
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.