## On a lower bound for the first eigenvalue of the Laplace operator on a Riemannian manifold.(English)Zbl 0553.53026

Let M be an m-dimensional compact connected Riemannian manifold with smooth boundary $$\partial M$$. Say that M is ”of class (R,$$\Lambda)$$” if the Ricci curvature of M is bounded below by (m-1)R and the mean curvature H of $$\partial M$$ is bounded above by $$\Lambda$$. (Signs are chosen so $$H<0$$ if $$\partial M$$ is convex.) The first (Dirichlet) eigenvalue of the Laplacian on M is $$\lambda_ 1$$, the diameter of M is d, and the in-radius of M is I. Theorem 1. If M is of class (R,$$\Lambda)$$ then $$\lambda_ 1\leq L=$$ constant depending only on m, R, $$\Lambda$$, and I. This bound is achieved precisely when M is a ”model space of class (R,$$\Lambda)$$”. Theorem 2: Suppose M is a compact domain in a complete noncompact Riemannian manifold N ($$\partial N$$ empty). (1) If (m-1)R is a nonpositive lower bound on the Ricci curvature of N, then $$\lambda_ 1>A=$$ constant depending only on m, R, and d. (2) If, instead, the sectional curvature is bounded from above by a nonpositive constant K and N admits a concave function without a maximum, then $$\lambda >B=$$ constant depending only on K and d.
The model spaces of class (R,$$\Lambda)$$ and the constant L are described in terms of a Jacobi differential equation. The constants A and B are given explicitly. For instance: $B=\pi^ 2/(4d^ 2)\quad if\quad K=0;\quad B=(m-1)^ 2| K| /(4(1-\exp (-(m-1)| K|^{1/2}d/2))^ 2)\quad if\quad K<0.$ The author uses facts and Jacobi equation techniques from his earlier papers [Jap. J. Math., New Ser. 18, 309-341 (1982; Zbl 0518.53048) and J. Math. Soc. Japan 35, 117- 131 (1983; Zbl 0502.53034)]; in contrast, P. Li and S.-T. Yau [Proc. Symp. Pure Math. 36, 205-239 (1980; Zbl 0441.58014)] obtain similar results using gradient estimates.
Reviewer: R.Reilly

### MSC:

 53C20 Global Riemannian geometry, including pinching 58J50 Spectral problems; spectral geometry; scattering theory on manifolds

### Citations:

Zbl 0518.53048; Zbl 0502.53034; Zbl 0441.58014
Full Text:

### References:

 [1] J. BARTA , Sur la vibration fondamentale d’une membrane (Comptes Rendus de l’Acad. des Sci., Paris, Vol. 204, 1937 , pp. 472-473). JFM 63.0762.02 [2] P. BÉRARD et D. MEYER , Inégalités isopérimétriques et applications (Ann. scient. Éc. Norm. Sup., Paris, 4e série, t. 15, 1982 , pp. 513-542). Numdam | MR 84h:58147 | Zbl 0527.35020 · Zbl 0527.35020 [3] R. L. BISHOP and B. O’NEILL , Manifolds of negative curvature (Trans. Amer. Math. Soc., Vol. 145, 1969 , pp. 1-49). MR 40 #4891 | Zbl 0191.52002 · Zbl 0191.52002 · doi:10.2307/1995057 [4] J. CHEEGER and D. GROMOLL , The splitting theorem for manifolds of nonnegative curvature (J. Differential Geometry, Vol. 6, 1971 , pp. 119-128). MR 46 #2597 | Zbl 0223.53033 · Zbl 0223.53033 [5] R. COURANT and D. HILBERT , Methods of Mathematical Physics , Interscience Pub., Inc., New York, 1970 . [6] P. EBERLEIN and B. O’NEILL , Visibility manifolds (Pacific J. Math., Vol. 46, 1973 , pp. 45-109). Article | MR 49 #1421 | Zbl 0264.53026 · Zbl 0264.53026 · doi:10.2140/pjm.1973.46.45 [7] S. FRIEDLAND and W. K. HAYMAN , Eigenvalue inequalities for the Dirichlet problem on spheres and the growth of subharmonic functions (Comm. Math. Helvetici, Vol. 51, 1976 , pp. 133-161). MR 54 #568 | Zbl 0339.31003 · Zbl 0339.31003 · doi:10.1007/BF02568147 [8] S. GALLOT , Minorations sur le \lambda 1 des variétés riemanniennes , Séminaire Bourbaki 33e année, 1980 - 1981 , n^\circ 569. Numdam | Zbl 0493.53034 · Zbl 0493.53034 [9] S. GALLOT , A Sobolev inequality and some geometric applications , preprint (séminaire Franco-Japonais de Kyoto). · Zbl 0232.60037 [10] R. E. GREENE and H. WU , On the subharmonicity and plurisubharmonicity of geodesically convex function , (Indiana Univ., Math. J., Vol. 22, 1973 , pp. 641-653). MR 54 #10672 | Zbl 0235.53039 · Zbl 0235.53039 · doi:10.1512/iumj.1973.22.22052 [11] R. E. GREENE and H. WU , D\infty approximations of convex, subharmonic and plurisubharmonic functions (Ann. scient. Éc. Norm. Sup., 4e série, t. 12. 1979 , pp. 47-84). Numdam | MR 80m:53055 | Zbl 0415.31001 · Zbl 0415.31001 [12] M. GROMOV , Paul Levy’s isoperimetric inequalities , Publications I.H.E.S., 1981 . [13] E. HEINTZE and H. KARCHER , A general comparison theorem with applications to volume estimates for submanifolds (Ann. scient. Éc. Norm. Sup., Paris, Vol. 11, 1978 , pp. 451-470). Numdam | MR 80i:53026 | Zbl 0416.53027 · Zbl 0416.53027 [14] A. KASUE , On a Riemannian manifold with a pole (Osaka J. Math., Vol. 18, 1981 , pp. 109-113). MR 83f:53030 | Zbl 0477.53042 · Zbl 0477.53042 [15] A. KASUE , A Laplacian comparison theorem and function theoretic properties of a complete Riemannian manifold (Japan J. Math., Vol. 18, 1982 , pp. 309-341). MR 85h:53031 | Zbl 0518.53048 · Zbl 0518.53048 [16] A. KASUE , Ricci curvature, geodesics and some geometric properties of Riemannian manifolds with boundary (J. Math. Soc. Japan, Vol. 35, 1983 , pp. 117-131). Article | MR 84g:53068 | Zbl 0494.53039 · Zbl 0494.53039 · doi:10.2969/jmsj/03510117 [17] M. G. KREIN , On certain problems of the maximum and minimum of characteristic values and on the Lyapunov zones of stability (A.M.S. Trans., Vol. 2, n^\circ 1, 1955 , pp. 163-187). MR 17,484e | Zbl 0066.33404 · Zbl 0066.33404 [18] A. LICHNEROWICZ , Géométrie des groupes de transformations , Dunod, 1958 . MR 23 #A1329 | Zbl 0096.16001 · Zbl 0096.16001 [19] P. LI and S. T. YAU , Estimates of eigenvalues of a compact Riemannian manifold (Proc. Symp. Pure Math. A.M.S., Vol. 36, 1980 , pp. 205-239). MR 81i:58050 | Zbl 0441.58014 · Zbl 0441.58014 [20] H. P. MCKEAN , An upper bound to the spectrum on a manifold of negative curvature (J. Differential Geometry, Vol. 4, 1970 , pp. 359-366). MR 42 #1009 | Zbl 0197.18003 · Zbl 0197.18003 [21] M. OBATA , Certain conditions for a Riemannian manifold to be isometric with a sphere (J. Math. Soc. Japan, Vol. 14, 1962 , pp. 333-340). Article | MR 25 #5479 | Zbl 0115.39302 · Zbl 0115.39302 · doi:10.2969/jmsj/01430333 [22] W. A. POOR Jr. , Some results on nonnegatively curved manifolds (J. Differential Geometry, Vol. 9, 1974 , pp. 583-600). MR 51 #11351 | Zbl 0292.53037 · Zbl 0292.53037 [23] R. C. REILLY , Applications of the Hessian operator in a Riemannian manifold , (Indiana Univ. Math. J., Vol. 26, 1977 , pp. 459-472). MR 57 #13799 | Zbl 0391.53019 · Zbl 0391.53019 · doi:10.1512/iumj.1977.26.26036 [24] H. WU , An elementary method in the study of nonnegative curvature (Acta. Math., Vol. 142, 1979 , pp. 57-78). MR 80c:53054 | Zbl 0403.53022 · Zbl 0403.53022 · doi:10.1007/BF02395057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.