×

Quantum central limit theorems for strongly mixing random variables. (English) Zbl 0553.60031

N. Giri and W. von Waldenfels [ibid. 42, 129-134 (1978; Zbl 0362.60043)] extended the classical central limit theorem to a quantum mechanical framework. That approach requires the existence of moments of all orders, but very little on the algebraic structure involved (only the existence of some kind of commutation relations). The authors of the present paper extend the Giri-von Waldenfels method to the quantum analogue of sequences of dependent random variables satisfying a certain mixing condition. This technique applies both to the Bose and to the Fermi case. Hence the results obtained include e.g. those of R. L. Hudson [A quantum-mechanical central limit theorem for anti-commuting observables. J. Appl. Probab. 10, 502-509 (1973)] and of W. von Waldenfels [Z. Wahrscheinlichkeitstheor. Verw. Geb. 42, 135-140 (1978; Zbl 0405.60095)].
Reviewer: K.Schürger

MSC:

60F05 Central limit and other weak theorems
81P20 Stochastic mechanics (including stochastic electrodynamics)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Accardi, L.: On the non commutative Markov property. Functional Anal. Appl. 9, 1-8 (1975) · Zbl 0395.60076
[2] Cockroft, A.A., Gudder, S.P., Hudson, R.L.: A quantum mechanical functional limit theorem. J. Multivariate Anal. 7, 125-148 (1977) · Zbl 0401.60087
[3] Cushen, C.D., Hudson, R.L.: A quantum mechanical central limit theorem. J. Appl. Probability 8, 454-469 (1971) · Zbl 0224.60049
[4] Fannes, M., Quaegebeur, J.: Central limits of product mappings between CAR-algebras. Preprint KUL-TF-81/13 · Zbl 0539.46041
[5] Giri, N., von Waldenfels, W.: An algebraic version of the central limit theorem. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 42, 129-134 (1978) · Zbl 0362.60043
[6] Hudson, R.L., A quantum mechanical central limit theorem for anti-commuting observables. J. Appl. Probability 10, 502-509 (1973)
[7] Ion, P.D.F., von Waldenfels, W.: An algebraic approach to quantum stochastics. Manuscript in preparation (1982)
[8] Parthasarathy, K.R.: Central limit theorems for positive definite functions on Lie groups. Symposia Mathematics, vol. XXI, p. 245-256 ed. Zanichelli, Bologna (1977) · Zbl 0374.60027
[9] Quaegebeur, J.: A non-commutative central limit theorem. Preprint KUL-TF-82/07 · Zbl 0571.46043
[10] Sch?rmann, M.: Positive definite Funktionen auf der freien Lie-Gruppe und stabile Grenzverteilungen. Thesis Heidelberg, 1979
[11] von Waldenfels, W.: An algebraic central limit theorem in the anticommuting case. Z. Wahrscheinlichkeitstheorie Verw. Gebiete 442, 135-140 (1978) · Zbl 0405.60095
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.