Henry, J. P. G.; Merle, M. Limites de normales, conditions de Whitney et éclatement d’Hironaka. (French) Zbl 0554.32010 Singularities, Summer Inst., Arcata/Calif. 1981, Proc. Symp. Pure Math. 40, Part 1, 575-584 (1983). [For the entire collection see Zbl 0509.00008.] Soient X un germe d’espace complexe (réduit, de dimension pure), plongé dans \({\mathbb{C}}^{n+1}\), et \(Y\subset X\) un germe lisse. On introduit l’espace complexe C(X) des limites d’hyperplans tangents et le morphisme conormal \(C(X)\to X.\) On prouve l’équivalence entre: (1) la constance des multiplicités des variétés polaires le long de Y; (2) l’équidimensionalité du diviseur exceptionnel du morphisme conormal composé avec l’éclatement de Y; (3) les conditions de Whitney pour \((X\setminus Sing X,Y).\) Ceci corrige le résultat de B. Teissier [C. R. Acad. Sci., Paris, Sér. A 290, 799-802 (1980; Zbl 0496.32009)]. Un exemple montre que la conclusion est fausse si on remplace le morphisme conormal par la modification de Nash. De même, on caractérise (2) formulée pour la modification de Nash par une propriété (1) en termes de variétés polaires nouvelles (attachées aux cycles de Schubert). Reviewer: C.Bănică Cited in 9 Documents MSC: 32Sxx Complex singularities 32S05 Local complex singularities 32S45 Modifications; resolution of singularities (complex-analytic aspects) Keywords:singularities; equisingularity; polar variety; Whitney conditions; modifications Citations:Zbl 0509.00008; Zbl 0496.32009 PDF BibTeX XML OpenURL