×

Remarques à propos du comportement, lorsque \(t\to +\infty\), des solutions des équations de Navier-Stokes associées à une force nulle. (French) Zbl 0554.35098

The paper improves and extends a result of C. Foias and J. C. Saut on the asymptotics for \(t\to \infty\) of the solutions of Navier-Stokes equations corresponding to a zero exterior force. Two cases are considered: I. the periodic case with respect to the space \({\mathbb{R}}^ N\) equations, of period \(Q=[0,L)^ N\) and II. the equations on a bounded domain \(\Omega\) of \({\mathbb{R}}^ N\) \((N=2,3).\)
In case I the Stokes operator A is selfadjoint in the phase space H of the divergence free, periodic vector fields in \(L^ 2_{loc}({\mathbb{R}}^ N)\) of zero mean value, on the domain \(D(A)=H\cap H^ 2_{loc}({\mathbb{R}}^ N)\). In this framework the following result is proved: for each weak solution u on [0,\(\infty)\), non-zero and very regular on an interval \((t_ 0,\infty)\), there exists an eigenvalue \(\Lambda\) of the operator A and a non-zero eigenvector \(W_{\Lambda}\) corresponding to it such that \(\lim_{t\to \infty}e^{\nu \Lambda t}u(t)=w_{\Lambda}\) in \(D(A^{m/2})\) for all \(m\in {\mathbb{N}}.\)
In case II the phase space H consists of the divergence free tangent to the boundary vector fields in \(L^ 2(\Omega)\) and the Stokes operator A is selfadjoint in H on \(D(A)=H\cap H^ 1_ 0(\Omega)\cap H^ 2(\Omega)\). One shows that for each non-zero, very regular solution on an interval \((t_ 0,\infty)\) there exists an eigenvalue \(\Lambda\) of the operator A and a non-zero eigenvector \(W_{\Lambda}\) such that the following asymptotics hold \(\lim_{t\to \infty}e^{\nu \lambda t}u^{(j)}(t)=(-\nu \Lambda)^ jw_{\Lambda}\) in \(H^ m(\Omega)\cap H\) for all the time derivatives \(u^{(j)}\) and all \(m\in {\mathbb{N}}\).
Reviewer: G.Minea

MSC:

35Q30 Navier-Stokes equations
35B40 Asymptotic behavior of solutions to PDEs
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] FOIAS (C.) et SAUT (J.-C.) . - Limite du rapport de l’enstrophie sur l’énergie pour une solution faible des équations de Navier-Stokes , C.R. Acad. Sc., Paris, t. 293, série I, 1981 , p. 241-244. MR 84f:35115 | Zbl 0492.35063 · Zbl 0492.35063
[2] FOIAS (C.) et SAUT (J. C.) . - Asymptotic behavior, as t \rightarrow + \infty , of solutions of Navier-Stokes equations , Séminaire du Collège de France, 1981 - 1982 , à paraître aux Éditions Pitman.
[3] GUILLOPE (C.) . - Comportement à l’infini des solutions des équations de Navier-Stokes et propriété des ensembles fonctionnels invariants (ou attracteurs) , Annales de l’Institut Fourier, t. 32, 1982 , p. 1-37. Numdam | MR 84a:35241 | Zbl 0488.35067 · Zbl 0488.35067 · doi:10.5802/aif.879
[4] HEYWOOD (J. G.) . - The Navier-Stokes equations : on the existence , regularity and decay of solutions, Indiana U. Math. J., t. 29, 1980 , p. 639-681. MR 81k:35131 | Zbl 0494.35077 · Zbl 0494.35077 · doi:10.1512/iumj.1980.29.29048
[5] HEYWOOD (J. G.) et RANNACHER (R.) . - Finite element approximation of the nonstationary Navier-Stokes problem , Part I : Regularity of solutions and second-order estimates for spatial discretization, S.I.A.M. J. Numer. Anal., t. 19, 1982 , p. 275-311. MR 83d:65260 | Zbl 0487.76035 · Zbl 0487.76035 · doi:10.1137/0719018
[6] KISELEV (A. A.) et LADYZENSKAIA (O. A.) . - On existence and uniqueness of the solution of the nonstationary problem for a viscous incompressible fluid , Ann. Math. Soc. Transl., (2), t. 24, 1963 , p. 79-106. Zbl 0131.41201 · Zbl 0131.41201
[7] LADYZENSKAIA (O. A.) . - Solutions ”in the large” of nonstationary boundary value problem for the Navier-Stokes system with two space variables , Comm. Pure Appl. Math., t. 12, 1959 , p. 427-433. MR 21 #7674 | Zbl 0103.19502 · Zbl 0103.19502 · doi:10.1002/cpa.3160120303
[8] LERAY (J.) . - Essai sur le mouvement d’un fluide visqueux emplissant l’espace , Acta Math., t. 63, 1934 , p. 193-248. JFM 60.0726.05 · JFM 60.0726.05
[9] LERAY (J.) . - Essai sur les mouvements plans d’un liquide visqueux que limitent des parois , J. Math. Pures et Appl., t. 13, 1934 , p. 331-418. Article | JFM 60.0727.01 · JFM 60.0727.01
[10] LIONS (J. L.) . - Quelques méthodes de résolution des problèmes aux limites non linéaires , Dunod-Gauthier Villars, Paris, 1969 . Zbl 0189.40603 · Zbl 0189.40603
[11] TEMAM (R.) . - Navier-Stokes equations , Theory and numerical analysis, North-Holland, Amsterdam, 1979 . MR 82b:35133 | Zbl 0426.35003 · Zbl 0426.35003
[12] TEMAM (R.) . - Behaviour at time t = 0 of the solutions of semi-linear evolution equations , J. Diff. Eq., t. 43, 1982 , p. 73-82. MR 83c:35058 | Zbl 0446.35057 · Zbl 0446.35057 · doi:10.1016/0022-0396(82)90075-4
[13] TEMAM (R.) . - Navier-Stokes equations and nonlinear analysis , N.S.F./C.B.M.S. Regional Conference, Dekalb, 1981 , S.I.A.M., 1983 . · Zbl 0529.35002
[14] BARDOS (C.) et TARTAR (L.) . - Sur l’unicité rétrograde des équations paraboliques et quelques questions voisines , Arch. Rat. Mech. An., t. 50, 1973 , p. 10-25. MR 49 #3281 | Zbl 0258.35039 · Zbl 0258.35039 · doi:10.1007/BF00251291
[15] FOIAS (C.) et SAUT (J. C.) . - Asymptotic behavior, as t \rightarrow + \infty , of solutions of Navier-Stokes equations and nonlinear spectral manifolds , Indiana Math. J., (à paraître). Zbl 0565.35087 · Zbl 0565.35087 · doi:10.1512/iumj.1984.33.33025
[16] SERRIN (J.) . - The initial value problem for the Navier-Stokes equation , Nonlinear problems, University of Wisconsin Press, R. E. LANGER éd., 1963 . MR 27 #442 · Zbl 0115.08502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.