×

Hilberträume mit amorphen Basen. (German) Zbl 0554.47001

Ramsey’s theorem RT is the assertion, that for every infinite set X, every set \(C\subseteq [X]^ 2\) (the family of pairs) there is an infinite \(H\subseteq X\) such that \([H]^ 2\subseteq C\) or \([H]^ 2\cap C=\emptyset.\) RT is a weak form of the axiom of choice which is consistent with the existence of an amorphous set (an infinite set each of its infinite subsets is cofinite). RT implies, that every operator on a Hilbert space with an amorphous base is a direct sum of a finite matrix and a scalar operator. RT is necessary to obtain this conclusion.

MSC:

47A05 General (adjoints, conjugates, products, inverses, domains, ranges, etc.)
03E25 Axiom of choice and related propositions
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)

References:

[1] A.A. Albert and B. Muckenhoupt : Matrices of trace zero , Michigan Math. Journal 4 (1957) 1-3. · Zbl 0077.24304 · doi:10.1307/mmj/1028990168
[2] A. Blass : Ramsey’s Theorem in the hierarchy of choice principles . Journal of Symbolic Logic 42 (1977) 387-340. · Zbl 0374.02037 · doi:10.2307/2272866
[3] N. Brunner : Sequential Compactness and the Axiom of Choice . Notre Dame Journal of Formal Logic 24 (1983) 89-92. · Zbl 0464.03045 · doi:10.1305/ndjfl/1093870222
[4] N. Brunner : Dedekind-Endlichkeit und Wohlordenbarkeit , Monatshefte für Mathematik 94 (1982) 9-31. · Zbl 0481.03030 · doi:10.1007/BF01369079
[5] J.W. Calkin : Two sided ideals in the ring of bounded operators . Ann. Math. 42 (1941) 834-873. · Zbl 0063.00692 · doi:10.2307/1968771
[6] J. Cigler and H.C. Reichel : Topologie , Bibliograph. Inst. BI 121, Wien 1978. · Zbl 0397.54001
[7] N. Dunford and J.T. Schwartz : Linear Operators I Interscience , New York: (1957). · Zbl 0084.10402
[8] J.L. Hickman : Groups in models of set theory , Bull. Aust. Math. Soc. 14 (1976) 199-232. · Zbl 0324.02055 · doi:10.1017/S0004972700025041
[9] J.L. Hickman : Quasiminimal posets and lattices , Journal für die reine und angewandte Mathematik 296 (1977) 10-13. · Zbl 0359.06003 · doi:10.1515/crll.1977.296.10
[10] T.J. Jech : The Axiom of Choice New York: North Holland (1973) · Zbl 0259.02051
[11] E.M. Kleinberg : The independence of Ramsey’s theorem . Journal of Symbolic Logic 34 (1969) 205-206. · Zbl 0185.01501 · doi:10.2307/2271095
[12] H. Läuchli : Auswahlaxiom in der Algebra . Commentarii Math. Helvetii 37 (1963) 1-18. · Zbl 0108.01002 · doi:10.1007/BF02566957
[13] C. Pearcy : On the sum of two commutators . Proc. Amer. Math. Soc. 16 (1959) 81-93.
[14] D. Pincus : The independence of the Boolean Prime Ideal theorem , Bull. Amer. Math. Soc. 78 (1972) 766-770. · Zbl 0257.02051 · doi:10.1090/S0002-9904-1972-13025-8
[15] J. Truss : Classes of Dedekind-Finite Cardinals . Fundamenta Math. 84 (1974) 187-208. · Zbl 0292.02049
[16] H. Wielandt : Unbeschränktheit der Operatoren der Quantenmechanik , Mathematische Annalen 121 (1949) 21. · Zbl 0035.19903 · doi:10.1007/BF01329611
[17] A. Wintner : Unboundedness of Quantum Mechanical Matrices , Physical Rev. 71 (1947) 738-739. · Zbl 0032.13602 · doi:10.1103/PhysRev.71.738.2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.