Rudin, Mary Ellen Dowker spaces. (English) Zbl 0554.54005 Handbook of set-theoretic topology, 761-780 (1984). [For the entire collection see Zbl 0546.00022.] A Dowker space is a normal space whose Cartesian product with the closed interval is not normal (equivalently, which is not countably paracompact). The paper is a survey of results on the (non)existence of Dowker spaces satisfying certain additional conditions. The last section contains the proof of the homotopy extension theorem and a brief discussion of some classes of spaces related to the class of Dowker spaces. Reviewer: J.Chaber Cited in 3 ReviewsCited in 17 Documents MSC: 54D15 Higher separation axioms (completely regular, normal, perfectly or collectionwise normal, etc.) 54D20 Noncompact covering properties (paracompact, Lindelöf, etc.) 54A35 Consistency and independence results in general topology Keywords:normality; countable paracompactness; (non)existence of Dowker spaces; homotopy extension theorem Citations:Zbl 0546.00022 PDFBibTeX XML