Processus des misanthropes. (French) Zbl 0554.60097

We consider a system of identical interacting particles moving on the lattice \({\mathbb{Z}}^ d\). The rate at which a particle at the site x jumps to the site y is p(y-x)b(\(\eta\) (x),\(\eta\) (y)) where p is an irreducible probability on \({\mathbb{Z}}^ d\) and b(\(\eta\) (x),\(\eta\) (y)) is an increasing (resp. decreasing) function of the number \(\eta\) (x) (resp. \(\eta\) (y)) of particles at site x (resp. y). We study the convergence of the system to equilibrium and describe the invariant measures.


60K35 Interacting random processes; statistical mechanics type models; percolation theory
60B10 Convergence of probability measures
Full Text: DOI


[1] Andjel, E., Invariant measures for the zero range process, Ann. Prob., 10, 525-547 (1982) · Zbl 0492.60096
[2] Andjel, E., The asymetric simple exclusion process on ℤ^d, Z. Wahrscheinlichkeitstheor. Verw. Geb., 58, 423-432 (1981) · Zbl 0458.60097
[3] Cocozza, Ch.; Kipnis, C., Processus de vie et mort sur ℝ avec interaction selon les particules les plus proches, Z. Wahrscheinlichkeitstheor. Verw. Geb., 51, 123-132 (1980) · Zbl 0428.60090
[4] Cocozza, Ch.; Roussignol, M., Unicité d’un processus de naissance et mort sur la droite réelle, Annales de l’IHP, 15, 93-105 (1979) · Zbl 0405.60082
[5] Holley, R.; Stroock, D., A martingale approach to infinite systems of interacting processes, Ann. Probab., 4, 195-228 (1976) · Zbl 0332.60072
[6] Holley, R.; Stroock, D., Nearest neighbor birth and death processes on the real line, Acta Math., 140, 103-154 (1978) · Zbl 0405.60090
[7] Liggett, T., The stochastic evolution of infinite systems for interacting particles, Ecole d’Eté de probabilités de Saint-Flour VI, 1976 (1977), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0363.60109
[8] Liggett, T.: Interacting particle systems. [à paraître chez Springer] · Zbl 0559.60078
[9] Spitzer, F., Interacting Markov processes, Adv. Math., 5, 246-290 (1970) · Zbl 0312.60060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.