×

zbMATH — the first resource for mathematics

Associative monotonic operations in fuzzy set theory. (English) Zbl 0555.94027
Properties of associative monotonic binary operations on an interval are thoroughly investigated. These considerations allow the authors to show that the lattice operations have a rather unique position among other possible operations on fuzzy sets. Other consequences are given for generalized operations on fuzzy numbers or random variables.
Reviewer: J.Sustal

MSC:
94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Aczél, J, Lectures on functional equations and their applications, (1966), Academic Press New York · Zbl 0139.09301
[2] Alsina, C; Trillas, E; Valverde, L, On non distributive logical connectives for fuzzy set theory, Busefal, 3, 8-29, (1980)
[3] Bellman, R; Giertz, M, On the analytic formalism of the theory of fuzzy sets, Information sci., 5, 149-156, (1973) · Zbl 0251.02059
[4] Birkhoff, G, Lattice theory, () · Zbl 0126.03801
[5] Czogała, E, Probabilistic sets under various operations, Busefal, 11, 5-13, (1982) · Zbl 0502.60005
[6] Dombi, J, Basic concepts for a theory of evaluation, (), 282-293 · Zbl 0488.90003
[7] Dombi, J, A general class of fuzzy operators, the demorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators, Fuzzy sets and systems, 8, 149-163, (1982) · Zbl 0494.04005
[8] Drewniak, J, Axiomatic systems in fuzzy algebra, Acta cybernetica (Szeged), 5, 191-206, (1981) · Zbl 0476.04005
[9] Drewniak, J, Binary operations on fuzzy sets, Busefal, 14, 69-74, (1983) · Zbl 0525.03013
[10] J. Drewniak, Podstawy teorii zbiorów rozmytych (Uniwersytet Śla̧ski, Katowice, to appear).
[11] Dubois, D, Processing vagues queries in man-machine systems: A fuzzy set approach, (), 14-17, New Delhi, India
[12] Dubois, D; Prade, H, Fuzzy algebra, analysis, logics, TR-EE 78-13, (1978), Purdue Univ., West Lafayette, IN
[13] Dubois, D; Prade, H, New results about properties and semantics of fuzzy set-theoretic operators, (), 59-75
[14] Dubois, D; Prade, H, Addition of interactive fuzzy numbers, IEEE trans automat. control, 26, 926-936, (1981)
[15] Fuchs, L, Partially ordered algebraic systems, (1963), Pergamon Press Oxford · Zbl 0137.02001
[16] Fung, L.W; Fu, K.S, An axiomatic approach to rational decision making in a fuzzy environment, (), 227-256 · Zbl 0366.90003
[17] Hamacher, H, Über logische verknüpfungen unscharfer aussagen und deren zugehörige bewertungsfunktionen, arbeitsbericht \(7514\), (1975), Inst. für Wirtschaftswissenschaften RWTH Aachen · Zbl 0435.03018
[18] Hirota, K, Concepts of probabilistic sets, Fuzzy sets and systems, 5, 31-46, (1981) · Zbl 0442.60008
[19] Klement, E.P, Construction of fuzzy σ-algebra using triangular norms, J. math. anal. appl., 85, 543-565, (1982) · Zbl 0491.28003
[20] Klement, E.P, Operations on fuzzy sets-an axiomatic approach, Information sci., 27, 221-232, (1982) · Zbl 0515.03036
[21] Kóczy, L.T, On some basic theoretical problems of fuzzy mathematics, Acta cybernetica (Szeged), 3, 225-237, (1977) · Zbl 0371.94002
[22] Ling, C.H, Representation of associative functions, Publ. math. debrecen, 12, 189-212, (1965) · Zbl 0137.26401
[23] Mizumoto, M, Fuzzy sets under various operations (part II), Busefal, 7, 32-44, (1981)
[24] Papoulis, A, Probability, random variables, and stochastic processes, (1965), McGraw-Hill New York · Zbl 0191.46704
[25] Prade, H, Unions et intersections d’ensembles flous, Busefal, 3, 58-62, (1980)
[26] Ruitenbeek, K, Comment on “fuzzy sets under various operations”, Busefal, 5, 8-10, (1981)
[27] Schweizer, B; Sklar, A, Statistical metric spaces, Pacific J. math., 10, 313-334, (1960) · Zbl 0091.29801
[28] Schweizer, B; Sklar, A, Associative functions and statistical triangle inequalities, Publ. math. debrecen, 8, 169-186, (1961) · Zbl 0107.12203
[29] Silvert, W, Symmetric summation: A class of operations on fuzzy sets, IEEE trans. SMC, 9, 657-659, (1979) · Zbl 0424.04003
[30] Umano, M; Mizumoto, M; Tanaka, K, FSTDS system: A fuzzy-set manipulation system, Information sci., 14, 115-159, (1978) · Zbl 0416.68019
[31] Weber, S, A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms, Fuzzy sets and systems, 11, 115-134, (1983) · Zbl 0543.03013
[32] Yager, R.R, On a general class of fuzzy connectives, Fuzzy sets and systems, 4, 235-242, (1980) · Zbl 0443.04008
[33] Zadeh, L.A, Fuzzy sets, Inform. and control, 8, 338-353, (1965) · Zbl 0139.24606
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.