Multi soliton solution for the system of coupled Korteweg-de Vries equations. (English) Zbl 1163.35467

Summary: We consider the system of coupled Korteweg-de Vries equations and establish the transformation which turns the coupled KdV equations into the single nonlinear partial differential equation, then we obtain an auto-Bäcklund transformation and Lax pairs by using the extended homogeneous balance method. Also, we obtain the multi soliton solutions and the new trigonometric function periodic solutions by using the generalized tanh method.


35Q53 KdV equations (Korteweg-de Vries equations)
35A30 Geometric theory, characteristics, transformations in context of PDEs
35Q51 Soliton equations
35B10 Periodic solutions to PDEs
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K35 Lie-Bäcklund and other transformations for infinite-dimensional Hamiltonian and Lagrangian systems


Full Text: DOI


[1] Khalfallah, Mohammed, New exact traveling wave solutions of the (3+1) dimensional kadomtsev – petviashvili (KP) equation, Commun. nonlinear sci. numer. simul., 14, 1169-1175, (2009) · Zbl 1221.35341
[2] Mohammed Khalfallah, Exact traveling wave solutions of the Boussinesq-Burgers equation, Math. Comput. Model. 49 (2009) 666-671. · Zbl 1165.35445
[3] A.S. Abdel Rady, A.H. Khater, E.S. Osman, Mohammed Khalfallah, New periodic wave and soliton solutions for system of coupled Korteweg-de Vries equations, Appl. Math. Comput. 207 (2009) 406-414. · Zbl 1159.35406
[4] Wang, M.L., Solitary wave solution for variant Boussinesq equations, Phys. lett. A, 199, 169-172, (1995) · Zbl 1020.35528
[5] Wang, M.L., Application of homogeneous balance method to exact solutions of nonlinear equation in mathematical physics, Phys. lett. A, 216, 67-75, (1996) · Zbl 1125.35401
[6] Fan, E.G.; Zhang, H.Q., New exact solutions to a system of coupled KdV equations, Phys. lett. A, 245, 389-392, (1998) · Zbl 0947.35126
[7] Fan, E.G.; Zhang, H.Q., A note on the homogeneous balance method, Phys. lett. A, 246, 403-406, (1998) · Zbl 1125.35308
[8] Ablowitz, M.J.; Clarkson, P.A., Soliton, nonlinear evolution equations and inverse scattering, (1991), Cambridge Univ. Press New York · Zbl 0762.35001
[9] Gu, C.H., Soliton theory and its application, (1990), Zhejiang Science and Technology Press Zhejiang
[10] Fan, E.G., Two new applications of the homogeneous balance method, Phys. lett. A, 265, 353-357, (2000) · Zbl 0947.35012
[11] Fan, E.G., Auto-Bäcklund transformation and similarity reductions for general variable coefficient KdV equations, Phys. lett. A, 294, 26-30, (2002) · Zbl 0981.35064
[12] Li, Z.B.; Zhang, S.Q., An implementation for the algorithm of janet bases of linear differential ideals in the Maple system, Acta math. sinica, 20, 605-616, (2004) · Zbl 1138.35300
[13] Hirota, R.; Satsuma, J., Soliton solutions of a coupled Korteweg-de Vries equation, Phys. lett. A, 85, 407-408, (1981)
[14] Hirota, R., Exact N-soliton solutions of a nonlinear wave equation, J. math. phys., 14, 805-809, (1973) · Zbl 0257.35052
[15] Musette, M.; Conte, R., Algorithmic method for deriving Lax pairs from the invariant Painlevé analysis of nonlinear partial differential equations, J. math. phys., 32, 1450-1457, (1991) · Zbl 0734.35086
[16] M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, 1981. · Zbl 0472.35002
[17] Matsuno, Y., Bilinear transformation method, (1984), Academic Press Orlando · Zbl 0552.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.