Aseev, S. M.; Kryazhimskiĭ, A. V. The Pontryagin maximum principle and problems of optimal economic growth. (English) Zbl 1215.49001 Proc. Steklov Inst. Math. 257, 1-255 (2007); translation from Tr. Mat. Inst. Steklova 257, 5-271 (2007); ISBN: 978-5-02-035603-0. This extensive paper is divided in two chapters, the first containing the mathematics underpinning the economic models (mainly a version of the maximum principle for finite dimensional control systems) and various economic applications. The second chapter is devoted to a single model (see below).Chapter 1. The (finite-dimensional differential autonomous) system is \[ x'(t) = f(x(t), u(t)) \quad (t \geq 0), \qquad x(0) = x_0, \tag{1} \]where the measurable control \(u(t)\) belongs to a control set \(U\). The infinite time horizon functional to be maximized is \[ J(x, u) = \int_0^\infty e^{- \rho t} g(x(t), u(t))\,dt. \tag{2} \]The assumptions on (1) are standard: differentiability of \(f(x, u)\) in \(x\) and continuity in \((x, u)\), a growth condition insuring existence of solutions for all \(t \geq 0\) and convexity conditions implying (together with additional requirements on \(g(x, u))\) the existence of optimal controls (the case where solutions may blow up in finite time is also briefly covered). The setting in most treatments of control problems for (1) is a finite interval \([0, T];\) the present infinite time horizon situation (which the authors consider essential in the treatment of economic systems) introduces complications illustrated with the following example. If we make a “change of time” \(\tau(t) = 1 - e^{-\rho t}\iff t(\tau) = - \log (1 - \tau)/ \rho\) the time interval becomes \(0 \leq \tau \leq 1.\) The functional retains its regularity, \[ J(x, u) = {1 \over \rho}\int_0^1 g(x(\tau), u(\tau)) d\tau, \]but the system loses it: it becomes \[ x'(\tau) = {1 \over \rho (1 - \tau)}f(x(\tau), u(\tau)), \]whose right hand side blows up at \(\tau = 1,\) the terminal time of the control interval.After various examples in Section 1, the mathematics begins in Section 2 with an existence proof for optimal controls (based on a finite horizon approximation). Then the validity of Pontryagin’s maximum principle for (1)–(2) is established (giving, as usual, necessary conditions for optimality of a pair \((x(t), u(t))\) in terms of the adjoint variable \(p(t))\) together with transversality conditions at infinity. In Section 5 the results are applied to the problem of optimal investment in basic production assets of an abstract enterprise where the coordinates of the vector \(p(t)\) are interpreted as marginal or shadow prices. In the rest of the chapter various additions to the theory are given. Among these: an approximation of the control problem (1)–(2) by a sequence of finite horizon problems, proved first for an affine system \[ x'(t) = f_0(x(t)) + \sum_{j=1}^m f_j(x(t)) u^j(t) \]and then for the general system, and sufficient optimality conditions based on the maximum principle. This chapter also includes further examples and economical applications such as models of economic growth. Chapter 2. The mathematical machinery developed in the first chapter is applied to the study of two interconnected macroeconomic systems (e.g., countries). In the second system (the technological follower) the R&D (research and development) sector is largely oriented to absorption of part of the knowledge produced by the R&D sector of the first system (the technological leader). The object is to study the optimal behavior of the technological follower as a subsystem.The paper contains an ample bibliography of 83 items and (especially at the end of Chapter 1) a detailed comparison of the results with earlier results in the literature. Reviewer: Hector O. Fattorini (Los Angeles) Cited in 65 Documents MSC: 49-02 Research exposition (monographs, survey articles) pertaining to calculus of variations and optimal control 49K15 Optimality conditions for problems involving ordinary differential equations 91B62 Economic growth models 91B74 Economic models of real-world systems (e.g., electricity markets, etc.) 91B32 Resource and cost allocation (including fair division, apportionment, etc.) 91B02 Fundamental topics (basic mathematics, methodology; applicable to economics in general) Keywords:Pontryagin’s maximum principle; infinite horizon; adjoint vector; models of economic growth; optimal investments; production assets; marginal prices; shadow prices; technological leader; technological follower × Cite Format Result Cite Review PDF Full Text: DOI References: [1] V. V. Aleksandrov, V. G. Boltyanskii, S. S. Lemak, N. A. Parusnikov, and V. M. Tikhomirov, Optimization of the Dynamics of Control Systems (Mosk. Gos. Univ., Moscow, 2000) [in Russian]. [2] V. I. Arnold, Mathematical Methods of Classical Mechanics (Nauka, Moscow, 1979; Springer, New York, 1997). [3] V. I. Arnold, ”Optimization in Mean and Phase Transitions in Controlled Dynamical Systems,” Funkts. Anal. Prilozh. 36(2), 1–11 (2002) [Funct. Anal. Appl. 36, 83–92 (2002)]. · Zbl 1039.53082 · doi:10.1023/A:1014475315820 [4] A. V. Arutyunov, ”Perturbations of Extremal Problems with Constraints and Necessary Optimality Conditions,” in Itogi Nauki Tekh., Ser. Mat. Anal. (VINITI, Moscow, 1989), Vol. 27, pp. 147–235 [J. Sov. Math. 54 (6), 1342–1400 (1991)]. [5] A. V. Arutyunov, Optimality Conditions: Abnormal and Degenerate Problems (Faktorial, Moscow, 1997; Kluwer, Dordrecht, 2000). · Zbl 0894.90133 [6] S. M. Aseev, ”A Method of Smooth Approximation in the Theory of Necessary Optimality Conditions for Differential Inclusions,” Izv. Ross. Akad. Nauk, Ser. Mat. 61(2), 3–26 (1997) [Izv. Math. 61, 235–258 (1997)]. · Zbl 0895.49015 · doi:10.4213/im113 [7] S. M. Aseev, ”Extremal Problems for Differential Inclusions with State Constraints,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 233, 5–70 (2001) [Proc. Steklov Inst. Math. 233, 1–63 (2001)]. [8] S. M. Aseev and A. V. Kryazhimskii, ”The Pontryagin Maximum Principle for an Optimal Control Problem with a Functional Specified by an Improper Integral,” Dokl. Akad. Nauk 394(5), 583–585 (2004) [Dokl. Math. 69 (1), 89–91 (2004)]. [9] S. M. Aseev, A. V. Kryazhimskii, and A. M. Tarasyev, ”The Pontryagin Maximum Principle and Transversality Conditions for an Optimal Control Problem with Infinite Time Interval,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 233, 71–88 (2001) [Proc. Steklov Inst. Math. 233, 64–80 (2001)]. [10] S. M. Aseev and A. I. Smirnov, ”First-Order Necessary Optimality Conditions for the Problem of Optimal Passage through a Given Domain,” in Nonlinear Dynamics and Control, Ed. by S.V. Emel’yanov and S.K. Korovin (Fizmatlit, Moscow, 2004), Issue 4, pp. 179–204 [in Russian]. [11] N. A. Bobylev, S. V. Emel’yanov, and S. K. Korovin, Geometrical Methods in Variational Problems (Magistr, Moscow, 1998; Kluwer, Dordrecht, 1999). [12] J. Warga, Optimal Control of Differential and Functional Equations (Academic, New York, 1972; Nauka, Moscow, 1977). · Zbl 0253.49001 [13] B. V. Gnedenko, Theory of Probability (URSS, Moscow, 2001; Gordon and Breach, Newark, NJ, 1997). · Zbl 0901.60001 [14] B. P. Demidovich, Lectures on the Mathematical Theory of Stability (Nauka, Moscow, 1967) [in Russian]. · Zbl 0155.41601 [15] A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems (Nauka, Moscow, 1974; North-Holland, Amsterdam, 1979). [16] A. N. Kolmogorov and S. V. Fomin, Elements of the Theory of Functions and Functional Analysis (Nauka, Moscow, 1976) [in Russian]. · Zbl 0090.08702 [17] B. Sh. Mordukhovich, Approximation Methods in Problems of Optimization and Control (Nauka, Moscow, 1988) [in Russian]. · Zbl 0643.49001 [18] L. S. Pontryagin, Ordinary Differential Equations (Nauka, Moscow, 1974; Addison-Wesley, Reading, 1962). · Zbl 0112.05502 [19] L. S. Pontryagin, V. G. Boltyanskij, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Fizmatgiz, Moscow, 1961; Pergamon, Oxford, 1964). · Zbl 0117.31702 [20] A. F. Filippov, ”On Some Problems in Optimal Control Theory,” Vestn. Mosk. Univ., Ser. 1: Mat., Mekh., Astron., Fiz., Khim., No. 2, 25–32 (1959). [21] A. F. Filippov, Differential Equations with Discontinuous Right-Hand Sides (Nauka, Moscow, 1985; Kluwer, Dordrecht, 1988). · Zbl 0571.34001 [22] P. Aghion and P. Howitt, Endogenous Growth Theory (MIT Press, Cambridge, MA, 1998). · Zbl 0927.91015 [23] K. J. Arrow, ”Applications of Control Theory to Economic Growth,” in Mathematics of the Decision Sciences (Am. Math. Soc., Providence, RI, 1968), Part 2, pp. 85–119. · Zbl 0193.20302 [24] K. J. Arrow and M. Kurz, Public Investment, the Rate of Return, and Optimal Fiscal Policy (J. Hopkins Univ. Press, Baltimore, MD, 1970). [25] A. V. Arutyunov and S. M. Aseev, ”Investigation of the Degeneracy Phenomenon of the Maximum Principle for Optimal Control Problems with State Constraints,” SIAM J. Control Optim. 35, 930–952 (1997). · Zbl 0873.49014 · doi:10.1137/S036301299426996X [26] S. M. Aseev, ”Methods of Regularization in Nonsmooth Problems of Dynamic Optimization,” J. Math. Sci. 94(3), 1366–1393 (1999). · Zbl 0936.49004 · doi:10.1007/BF02365018 [27] S. Aseev, G. Hutschenreiter, and A. Kryazhimskii, ”A Dynamic Model of Optimal Allocation of Resources to R&D,” IIASA Interim Rept. IR-02-016 (Laxenburg, Austria, 2002). [28] S. Aseev, G. Hutschenreiter, and A. Kryazhimskii, ”Optimal Investment in R&D with International Knowledge Spillovers,” WIFO Working Paper No. 175 (2002). · Zbl 1138.91538 [29] S. M. Aseev, G. Hutschenreiter, and A. V. Kryazhimskii, ”A Dynamical Model of Optimal Investment in R&D,” J. Math. Sci. 126(6), 1495–1535 (2005). · Zbl 1138.91538 · doi:10.1007/s10958-005-0040-3 [30] S. Aseev, G. Hutschenreiter, A. Kryazhimskiy, and A. Lysenko, ”A Dynamical Model of Optimal Investment in Research and Development,” Math. Comput. Modell. Dyn. Syst. 11(2), 125–123 (2005). · Zbl 1116.91063 · doi:10.1080/1387395050500067361 [31] S. Aseev and A. Kryazhimskii, ”The Pontryagin Maximum Principle for Infinite-Horizon Optimal Controls,” IIASA Interim Rept. IR-03-013 (Laxenburg, Austria, 2003). [32] S. M. Aseev and A. V. Kryazhimskiy, ”The Pontryagin Maximum Principle and Transversality Conditions for a Class of Optimal Control Problems with Infinite Time Horizons,” SIAM J. Control Optim. 43, 1094–1119 (2004). · Zbl 1072.49015 · doi:10.1137/S0363012903427518 [33] S. Aseev, A. Kryazhimskii, and A. Tarasyev, ”First Order Necessary Optimality Conditions for a Class of Infinite Horizon Optimal-Control Problems,” IIASA Interim Rept. IR-01-007 (Laxenburg, Austria, 2001). [34] S. M. Aseev, A. V. Kryazhimskii, and A. M. Tarasyev, ”The Pontryagin Maximum Principle and Transversality Conditions for a Class of Optimal Economic Growth Problems,” in Nonlinear Control Systems 2001: Proc. 5th IFAC Symp., St. Petersburg (Russia), July 4–6, 2001 (Elsevier, New York, 2001), Vol. 1, pp. 71–76. [35] J. P. Aubin and F. H. Clarke, ”Shadow Prices and Duality for a Class of Optimal Control Problems,” SIAM J. Control Optim. 17, 567–586 (1979). · Zbl 0439.49018 · doi:10.1137/0317040 [36] F.-C. Bagliano and G. Bertola, Models for Dynamic Macroeconomics (Oxford Univ. Press, New York, 2004). · Zbl 1130.91372 [37] E. J. Balder, ”An Existence Result for Optimal Economic Growth Problems,” J. Math. Anal. Appl. 95, 195–213 (1983). · Zbl 0517.49002 · doi:10.1016/0022-247X(83)90143-9 [38] L. Baratchart, M. Chyba, and J.-B. Pomet, ”A Grobman-Hartman Theorem for Control Systems,” J. Dyn. Diff. Eqns. 19(1), 75–107 (2007). · Zbl 1126.34029 · doi:10.1007/s10884-006-9014-5 [39] R. J. Barro and X. Sala-i-Martin, Economic Growth (McGraw Hill, New York, 1995). [40] R. Bellman, Dynamic Programming (Princeton Univ. Press, Princeton, NJ, 1957). · Zbl 0077.13605 [41] J.-P. Benassy, ”Is There Always Too Little Research in Endogenous Growth with Expanding Product Variety?,” Eur. Econ. Rev. 42, 61–69 (1998). · doi:10.1016/S0014-2921(97)00061-5 [42] L. M. Benveniste and J. A. Scheinkman, ”Duality Theory for Dynamic Optimization Models of Economics: The Continuous Time Case,” J. Econ. Theory 27, 1–19 (1982). · Zbl 0503.90023 · doi:10.1016/0022-0531(82)90012-6 [43] J. Blot and P. Michel, ”First-Order Necessary Conditions for Infinite-Horizon Variational Problems,” J. Optim. Theory Appl. 88(2), 339–364 (1996). · Zbl 0843.49014 · doi:10.1007/BF02192175 [44] V. F. Borisov, G. Hutschenreiter, and A. V. Kryazhimskii, ”Asymptotic Growth Rates in Knowledge-Exchanging Economies,” Ann. Oper. Res. 89, 61–73 (1999). · Zbl 0939.91090 · doi:10.1023/A:1018944127579 [45] D. A. Carlson, A. B. Haurie, and A. Leizarowitz, Infinite Horizon Optimal Control. Deterministic and Stochastic Systems (Springer, Berlin, 1991). · Zbl 0758.49001 [46] D. Cass, ”Optimum Growth in an Aggregative Model of Capital Accumulation,” Rev. Econ. Stud. 32, 233–240 (1965). · doi:10.2307/2295827 [47] L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations (Springer, Berlin, 1959). · Zbl 0082.07602 [48] L. Cesari, Optimization–Theory and Applications. Problems with Ordinary Differential Equations (Springer, New York, 1983). · Zbl 0506.49001 [49] A. C. Chiang, Elements of Dynamic Optimization (McGraw Hill, Singapore, 1992). [50] F. H. Clarke, Optimization and Nonsmooth Analysis (J. Wiley, New York, 1983). · Zbl 0582.49001 [51] A. K. Dixit and R. S. Pyndyck, Investment under Uncertainty (Princeton Univ. Press, Princeton, NJ, 1994). [52] A. K. Dixit and J. Stiglitz, ”Monopolistic Competition and Optimum Product Diversity,” Am. Econ. Rev. 67, 297–308 (1977). [53] R. Dorfman, ”An Economic Interpretation of Optimal Control Theory,” Am. Econ. Rev. 59, 817–831 (1969). [54] I. Ekeland, ”Some Variational Problems Arising from Mathematical Economics,” in Mathematical Economics (Springer, Berlin, 1988), Lect. Notes Math. 1330, p. 1–18. · Zbl 0659.90028 [55] W. J. Ethier, ”National and International Returns to Scale in the Modern Theory of International Trade,” Am. Econ. Rev. 72, 389–405 (1982). [56] R. V. Gamkrelidze, Principles of Optimal Control Theory (Plenum Press, New York, 1978). · Zbl 0401.49001 [57] G. M. Grossman and E. Helpman, Innovation and Growth in the Global Economy (MIT Press, Cambridge, MA, 1991). [58] H. Halkin, ”Necessary Conditions for Optimal Control Problems with Infinite Horizons,” Econometrica 42, 267–272 (1974). · Zbl 0301.90009 · doi:10.2307/1911976 [59] P. Hartman, Ordinary Differential Equations (J. Wiley & Sons, New York, 1964). [60] M. W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra (Academic, London, 1974). · Zbl 0309.34001 [61] G. Hutschenreiter, Yu. M. Kaniovski, and A. V. Kryazhimskii, ”Endogenous Growth, Absorptive Capacities, and International R&D Spillovers,” IIASA Work. Paper WP-95-092 (Laxenburg, Austria, 1995). [62] K. Inada, ”On a Two-Sector Model of Economic Growth: Comments and a Generalization,” Rev. Econ. Stud. 30(2), 119–127 (1963). · doi:10.2307/2295809 [63] M. D. Intriligator, Mathematical Optimization and Economic Theory (Prentice-Hall, Englewood Cliffs, NJ, 1971). · Zbl 1140.90302 [64] T. Kamihigashi, ”Necessity of Transversality Conditions for Infinite Horizon Problems,” Econometrica 69, 995–1012 (2001). · Zbl 1020.49019 · doi:10.1111/1468-0262.00227 [65] T. C. Koopmans, ”Objectives, Constraints, and Outcomes in Optimal Growth Models,” Econometrica 35, 1–15 (1967). · Zbl 0166.15703 · doi:10.2307/1909381 [66] A. Liapounoff, Problème général de la stabilité du mouvement (Princeton Univ. Press, Princeton, NJ, 1947), Ann. Math. Stud. 17. [67] S. F. Leung, ”Transversality Condition and Optimality in a Class of Infinite Horizon Continuous Time Economic Models,” J. Econ. Theory 54, 224–233 (1991). · Zbl 0741.90007 · doi:10.1016/0022-0531(91)90116-L [68] H.-W. Lorenz, Nonlinear Dynamical Economics and Chaotic Motion (Springer, Berlin, 1989), Lect. Notes Econ. Math. Syst. 334. · Zbl 0717.90001 [69] O. L. Mangasarian, ”Sufficient Conditions for the Optimal Control of Nonlinear Systems,” SIAM J. Control 4, 139–152 (1966). · Zbl 0154.10401 · doi:10.1137/0304013 [70] P. Michel, ”On the Transversality Condition in Infinite Horizon Optimal Problems,” Econometrica 50, 975–985 (1982). · Zbl 0483.90026 · doi:10.2307/1912772 [71] W. D. Nordhaus, Managing the Global Commons. The Economics of Climate Change (MIT Press, Cambridge, MA, 1994). [72] F. P. Ramsey, ”A Mathematical Theory of Saving,” Econ. J. 38, 543–559 (1928). · doi:10.2307/2224098 [73] P. M. Romer, ”Endogenous Technological Change,” J. Polit. Econ. 98(5, Part 2), S71–S102 (1990). · doi:10.1086/261725 [74] P. A. Samuelson, ”Paul Douglas’s Measurement of Production Functions and Marginal Productivities,” J. Polit. Econ. 87(5), 923–939 (1979). · doi:10.1086/260806 [75] A. Seierstad, ”Necessary Conditions for Nonsmooth, Infinite-Horizon, Optimal Control Problems,” J. Optim. Theory Appl. 103(1), 201–229 (1999). · Zbl 0948.49009 · doi:10.1023/A:1021733719020 [76] A. Seierstad and K. Sydsaeter, Optimal Control Theory with Economic Applications (North-Holland, Amsterdam, 1987). · Zbl 0613.49001 [77] S. P. Sethi and G. L. Thompson, Optimal Control Theory: Applications to Management Science and Economics (Kluwer, Dordrecht, 2000). · Zbl 0998.49002 [78] K. Shell, ”Applications of Pontryagin’s Maximum Principle to Economics,” in Mathematical Systems Theory and Economics 1 (Springer, Berlin, 1969), Lect. Notes Oper. Res. Math. Econ. 11, pp. 241–292. · Zbl 0177.23403 [79] G. V. Smirnov, ”Transversality Condition for Infinite-Horizon Problems,” J. Optim. Theory Appl. 88(3), 671–688 (1996). · Zbl 0849.49018 · doi:10.1007/BF02192204 [80] R. M. Solow, Growth Theory: An Exposition (Oxford Univ. Press, New York, 1970). [81] L. E. Stern, ”Criteria of Optimality in the Infinite-Time Optimal Control Problem,” J. Optim. Theory Appl. 44(3), 497–508 (1984). · Zbl 0535.49015 · doi:10.1007/BF00935464 [82] M. L. Weitzman, Income, Wealth, and the Maximum Principle (Harvard Univ. Press, Cambridge, MA, 2003). · Zbl 1140.91005 [83] J. J. Ye, ”Nonsmooth Maximum Principle for Infinite-Horizon Problems,” J. Optim. Theory Appl. 76(3), 485–500 (1993). · Zbl 0802.49012 · doi:10.1007/BF00939379 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.