×

zbMATH — the first resource for mathematics

A general concept of the pseudoprojective module. (English) Zbl 0556.16011
In the paper under review by analogy with the earlier investigated generalizations of pseudoinjectivity the authors give general notions of pseudoprojective modules. These notions depend on a fixed class of modules a and an idempotent cohereditary radical r (or on a pair of preradicals r and s). The authors give numerous characterizations of (r,a)-pseudoprojective and (r,s,i)-pseudoprojective modules, using different generalizations of cohereditary preradicals.
A part of the characterizations is given for the case when the modules investigated have projective covers. (More precise formulations of the results need many definitions and notations.)
Reviewer: A.Kashu

MSC:
16D40 Free, projective, and flat modules and ideals in associative algebras
16Nxx Radicals and radical properties of associative rings
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] J. A. Beachy: A generalization of injectivity. Pacif. J. Math. 41 (1972), 313-327. · Zbl 0235.16018
[2] L. Bican: QF-3’ modules and rings. Comment. Math. Univ. Carolinae 14 (1973), 295-303. · Zbl 0259.16005
[3] L. Bican: Preradicals and injectivity. Pacif. J. Math. 56 (1975), 367 - 372. · Zbl 0305.16018
[4] L. Bican: Corational extensions and pseudo-projective modules. Acta Math. Acad. Sci. Hungar. 28 (1976), 5-11. · Zbl 0339.16006
[5] L. Bican: General concept of injectivity. Universale Algebren und Theorie der Radikale, Akademie Verlag, Berlin, 1976, 37-40. · Zbl 0334.16005
[6] L. Bican P. Jambor T. Kepka F. Němec: Hereditary and cohereditary preradicals. Czech. Math. J. 26 (1976), 192-206. · Zbl 0327.16013
[7] L. Bican P. Jambor T. Kepka P. Němec: Pseudoprojective modules. Math. Slovaca 29 (1979), 106-115. · Zbl 0405.16017
[8] L. Bican T. Kepka P. Němec: Rings, modules and preradicals. Lecture notes in pure and applied mathematics. Vol. 75, Marcel Dekker Inc., New York and Basel (1982). · Zbl 0483.16026
[9] L. Bican J. Jirásko: Generalized pseudoinjectivity. · Zbl 0681.16017
[10] J. P. Jans: Torsion asociated with duality. Tôhoku Math. J. 24 (1972), 449-452. · Zbl 0245.16019
[11] J. Jirásko: Pseudohereditary and pseudocohereditary preradicals. Comment. Math. Univ. Carolinae 20 (1979), 317-327. · Zbl 0412.18013
[12] J. Jirásko: Preradicals and generalizations of QF-3’ modules. Comment. Math. Univ. Carolinae 23 (1982), 25-40. · Zbl 0467.16024
[13] J. Jirásko: Preradicals and generalizations of QF-3’ modules II. Comment. Math. Univ. Carolinae 23 (1982), 269-284. · Zbl 0467.16024
[14] H. Jirásková J. Jirásko: Generalized projectivity. Czech. Math. J. 28 (1978), 632-646.
[15] A. I. Kašu: When a radical associated with module is torsion. (Russian), Mat. Zametki 16 (1974), 41-48.
[16] Y. Kurata H. Katayama: On a generalization of QF-3’ rings. Osaka J. Math. 13 (1976), 407-418. · Zbl 0353.16007
[17] F. F. Mbuntum, K, Varadarajan: Half-exact preradicals. Comm. Algebra 5 (1977), 555-590. · Zbl 0357.16002
[18] K. M. Rangaswamy: Codivisible modules. Comm. Algebra 2 (1974), 475-489. · Zbl 0303.16012
[19] G. M. Zuckerman: On pseudoinjective modules and self-pseudoinjective rings. (Russian), Mat. Zametki 7 (1970), 369-380.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.