zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Improving implementation of linear discriminant analysis for the high dimension/small sample size problem. (English) Zbl 05560169
Summary: Classification based on Fisher’s linear discriminant analysis (FLDA) is challenging when the number of variables largely exceeds the number of given samples. The original FLDA needs to be carefully modified and with high dimensionality implementation issues like reduction of storage costs are of crucial importance. Methods are reviewed for the high dimension/small sample size problem and the one closest, in some sense, to the classical regular approach is chosen. The implementation of this method with regard to computational and storage costs and numerical stability is improved. This is achieved through combining a variety of known and new implementation strategies. Experiments demonstrate the superiority, with respect to both overall costs and classification rates, of the resulting algorithm compared with other methods.

62-99Statistics (MSC2000)
Full Text: DOI
[1] Anderson, E.; Bai, Z.; Bischof, C.; Blackford, L. S.; Demmel, J.; Dongarra, J.; Croz, J.; Du, J.; Greeenhaum, A.; Hammarling, S.; Mckenney, A.: Lapack users’ guide. (2000) · Zbl 0934.65030
[2] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H. (Eds.), 2000. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, 2000, SIAM, Philadelphia. · Zbl 0965.65058
[3] Bensmail, H.; Celeux, G.: Regularized Gaussian discriminant analysis through eigenvalue decomposition. J. amer. Statist. assoc. 91, 1743-1748 (1996) · Zbl 0885.62068
[4] Chen, L. -F.; Liao, H. -Y.M.; Ko, M. -T.; Lin, J. -C.; Yu, G. -J.: A new LDA-based face recognition system which can solve the small sample size problem. Pattern recognition 33, No. 10, 1713-1726 (2000)
[5] Cheng, Y. -Q.; Zhuang, Y. -M.; Yang, J. -Y.: Optimal Fisher discriminant analysis using the rank decomposition. Pattern recognition 25, No. 1, 101-111 (1992)
[6] Duda, R. O.; Hart, P. E.; Stork, D. G.: Pattern recognition. (2000)
[7] Fisher, R. A.: The use of multiple measurements in taxonomic problems. Ann. eugenics 7, 179-188 (1936)
[8] Friedman, J. H.: Regularized discriminant analysis. J. amer. Statist. assoc. 84, 165-175 (1989)
[9] Golub, G. H.; Van Loan, C. F.: Matrix computations. (1996) · Zbl 0865.65009
[10] Guo, Y. -F.; Li, S. -J.; Yang, J. -Y.; Shu, T. -T.; Wu, L. -D.: A generalized foley -- sammon transform based on generalized Fisher discriminant criterion and its application to face recognition. Pattern recognition lett. 24, 147-158 (2003) · Zbl 1055.68092
[11] Hastie, T., Tibshirani, R., 2003. Expression arrays and the p⪢n problem. See \langle http://www-stat.stanford.edu/∼hastie/Papers/pgtn.pdf\rangle .
[12] Hoffbeck, J. P.; Landgrebe, D. A.: Covariance matrix estimation and classification with limited training data. IEEE trans. Pattern anal. Mach intell. 18, No. 7, 763-767 (1996)
[13] Hong, Z. -Q.; Yang, J. -Y.: Optimal discriminant plane for a small number of samples and design method of classifier on the plane. Pattern recognition 24, No. 4, 317-324 (1991)
[14] Howland, P.; Park, H.: Generalizing discriminant analysis using the generalized singular value decomposition. IEEE trans. Pattern anal. Mach intell. 26, No. 8, 995-1006 (2004)
[15] Howland, P.; Jeon, M.; Park, H.: Structure preserving dimension reduction for clustered text data based on the generalized singular value decomposition. SIAM J. Matrix anal. Appl. 25, No. 1, 165-179 (2003) · Zbl 1061.68135
[16] Howland, P.; Wang, J.; Park, H.: Solving the small sample size problem in face recognition using generalized discriminant analysis. Pattern recognition 39, 277-287 (2006)
[17] Johnson, R. A.; Wichern, D. W.: Applied multivariate statistical analysis. (1998) · Zbl 0499.62002
[18] Kim, H.; Howland, P.; Park, P.: Dimension reduction in text classification with support vector machines. J. Mach learn. Res. 6, 37-53 (2005) · Zbl 1222.68233
[19] Krzanowski, W. J.; Jonathan, P.; Mccarthy, W. V.; Thomas, M. R.: Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data. Appl. statist. 44, No. 1, 101-115 (1995) · Zbl 0821.62032
[20] Li, Y.; Kittler, J.; Matas, J.: Effective implementation of linear discriminant analysis for face recognition and verification. Lecture notes in computer science 1689, 234-242 (1999)
[21] MathWorks, Inc., 1984 -- 2005. MATLAB 7.0, \langle http://www.mathworks.com/products/matlab/\rangle .
[22] Moler, C. B.; Stewart, G. W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. anal. 10, No. 2, 241-256 (1973) · Zbl 0253.65019
[23] Paige, C. C.; Saunders, M. A.: Towards a generalized singular value decomposition. SIAM J. Numer. anal. 18, No. 3, 398-405 (1981) · Zbl 0471.65018
[24] Parlett, B. N.: The symmetric eigenvalue problem. (1998) · Zbl 0885.65039
[25] R Development Core Team, 2005. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.
[26] Ripley, B. D.: Pattern recognition and neural networks. (1996) · Zbl 0853.62046
[27] Tibshirani, R.; Hastie, T.; Narasimhan, B.; Chu, G.: Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proc. nat. Acad. sci. USA 99, No. 10, 6567-6572 (2002)
[28] Venables, W. N.; Ripley, B. D.: Modern applied statistics with S. (2002) · Zbl 1006.62003
[29] Yang, J.; Yang, J. -Y.: Why can LDA be performed in PCA transformed space?. Pattern recognition 36, No. 2, 563-566 (2003)
[30] Yang, J., Yu, H., Kunz, W., 2000. An efficient LDA algorithm for face recognition. Sixth International Conference on Control, Automation, Robotics and Vision (ICARCV2000).