×

A new fusion formula and its application to continuous-time linear systems with multisensor environment. (English) Zbl 1452.62123

Summary: The problem of fusion of local estimates is considered. An optimal mean-square linear combination (fusion formula) of an arbitrary number of local vector estimates is derived. The derived result holds for all dynamic systems with measurements. In particular, for scalar uncorrelated local estimates, the fusion formula represents the well-known result in statistics. The fusion formula is applied to fusion of local Kalman estimates in multisensor filtering problem. Examples demonstrate high accuracy of the proposed fusion formula.

MSC:

62-08 Computational methods for problems pertaining to statistics
93E11 Filtering in stochastic control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bar-Shalom, Y.; Campo, L., The effect of the common process noise on the two-sensor fused-track covariance, IEEE Trans. Aerospace Electron. Systems, 22, 11, 803-805 (1986)
[2] Bar-Shalom, Y.; Li, X. R., Multitarget-multisensor Tracking: Principles and Techniques (1995), YBS Publishing: YBS Publishing Storrs
[3] Berg, T.M., Durrant-Whyte, H.F., 1994. General decentralized Kalman filter. In: Proceedings of the American Control Conference, Maryland, pp. 2273-2274.; Berg, T.M., Durrant-Whyte, H.F., 1994. General decentralized Kalman filter. In: Proceedings of the American Control Conference, Maryland, pp. 2273-2274.
[4] Beugnon, C., Singh, T., Llinas, J., Saha, R.K., 2000. Adaptive track fusion in a multisensor environment. In: Proceedings of the International Conference on Information Fusion, vol. 2. Paris, pp. 24-31.; Beugnon, C., Singh, T., Llinas, J., Saha, R.K., 2000. Adaptive track fusion in a multisensor environment. In: Proceedings of the International Conference on Information Fusion, vol. 2. Paris, pp. 24-31.
[5] Gelb, A., Applied Optimal Estimation (1974), MIT Press: MIT Press Cambridge, MA
[6] Hashemipour, H. R.; Roy, S.; Laub, A. J., Decentralized structures for parallel Kalman filtering, IEEE Trans. Automat. Control, 33, 1, 88-94 (1988) · Zbl 0644.93061
[7] Kendall, M. G.; Stuart, A., The Advanced Theory of Statistics, (Inference and Relationship, vol. 2 (1963), Griffin: Griffin London)
[8] Lewis, F. L., Optimal Estimation with an Introduction to Stochastic Control Theory (1986), Wiley: Wiley New York · Zbl 0665.93065
[9] Li, X.R., Zhang, P., 2001. Optimal linear estimation fusion—Part III: cross-correlation of local estimation errors. In: Proceedings of the International Conference on Information Fusion, vol. 1. Montreal, pp. 11-18.; Li, X.R., Zhang, P., 2001. Optimal linear estimation fusion—Part III: cross-correlation of local estimation errors. In: Proceedings of the International Conference on Information Fusion, vol. 1. Montreal, pp. 11-18.
[10] Li, X.R., Zhu, Y.M., Han, C.Z., 2000. Unified optimal linear estimation fusion—Part I: unified models and fusion rules. In: Proceedings of the International Conference on Information Fusion, vol. 2. Paris, pp. 10-17.; Li, X.R., Zhu, Y.M., Han, C.Z., 2000. Unified optimal linear estimation fusion—Part I: unified models and fusion rules. In: Proceedings of the International Conference on Information Fusion, vol. 2. Paris, pp. 10-17.
[11] Manyika, J.; Durrant-Whyte, H., Data Fusion and Sensor Management: a Decentralized Information-theoretic Approach (1994), Ellis Horwood: Ellis Horwood New York
[12] Seber, G. A.F.; Lee, A. J., Linear Regression Analysis (2003), Wiley: Wiley New Jersey · Zbl 1029.62059
[13] Shin, V.; Shevlyakov, G., An optimal mean square combination of estimates with application to filtering problems, Pattern Recognition Image Anal., 15, 2, 327-330 (2005)
[14] Zhu, Y. M., Multisensor Decision and Estimation Fusion (2003), Kluwer Academic: Kluwer Academic Boston
[15] Zhu, Y.; You, Z.; Zhao, J.; Zhang, K.; Li, X. R., The optimality for the distributed Kalman filtering fusion with feedback, Automatica, 37, 1393-1489 (2001) · Zbl 0989.93088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.