zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Gaussian predictive process models for large spatial data sets. (English) Zbl 05563371
Summary: With scientific data available at geocoded locations, investigators are increasingly turning to spatial process models for carrying out statistical inference. Over the last decade, hierarchical models implemented through Markov chain Monte Carlo methods have become especially popular for spatial modelling, given their flexibility and power to fit models that would be infeasible with classical methods as well as their avoidance of possibly inappropriate asymptotics. However, fitting hierarchical spatial models often involves expensive matrix decompositions whose computational complexity increases in cubic order with the number of spatial locations, rendering such models infeasible for large spatial data sets. This computational burden is exacerbated in multivariate settings with several spatially dependent response variables. It is also aggravated when data are collected at frequent time points and spatiotemporal process models are used. With regard to this challenge, our contribution is to work with what we call predictive process models for spatial and spatiotemporal data. Every spatial (or spatiotemporal) process induces a predictive process model (in fact, arbitrarily many of them). The latter models project process realizations of the former to a lower dimensional subspace, thereby reducing the computational burden. Hence, we achieve the flexibility to accommodate non-stationary, non-Gaussian, possibly multivariate, possibly spatiotemporal processes in the context of large data sets. We discuss attractive theoretical properties of these predictive processes. We also provide a computational template encompassing these diverse settings. Finally, we illustrate the approach with simulated and real data sets.

62-99Statistics (MSC2000)
Full Text: DOI