×

Legendre spectral Galerkin method for second-kind Volterra integral equations. (English) Zbl 1396.65165

Summary: The Legendre spectral Galerkin method for the Volterra integral equations of the second kind is proposed in this paper. We provide a rigorous error analysis for the proposed method, which indicates that the numerical errors (in the \(L_{2}\) norm) will decay exponentially provided that the kernel function and the source function are sufficiently smooth. Numerical examples are given to illustrate the theoretical results.

MSC:

65R20 Numerical methods for integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Atkinson K E. A Survey of Numerical Methods for the Solution of Fredholm Integral Equations of the Second Kind. Philadelphia: SIAM, 1976 · Zbl 0353.65069
[2] Bock I, Lovisek J. On a reliable solution of a Volterra integral equation in a Hilbert space. Appl Math, 2003, 48(6): 469–486 · Zbl 1099.45001 · doi:10.1023/B:APOM.0000024487.48855.d9
[3] Brunner H. Collocation Methods for Volterra Integral and Related Functional Equations. Cambridge: Cambridge University Press, 2004 · Zbl 1059.65122
[4] Canuto C, Hussaini M Y, Quarteroni A, Zang T A. Spectral Methods Fundamentals in Single Domains. Berlin: Springer-Verlag, 2006 · Zbl 1093.76002
[5] Federson M, Bianconi R, Barbanti L. Linear Volterra integral equations as the limit of discrete systems. Cadernos de Matematica, 2003, (4): 331–352 · Zbl 1067.45005
[6] Hu Q. Stieltjes derivatives and {\(\beta\)}-polynomial spline collocation for Volterra integrodifferential equations with singularities. SIAM J Numer Anal, 1996, 33(1): 208–220 · Zbl 0851.65098 · doi:10.1137/0733012
[7] Mahmoudi Y. Wavelet Galerkin method for numerical solution of nonlinear integral equation. Applied Mathematics and Computation, 2005, 167: 1119–1129 · Zbl 1082.65596 · doi:10.1016/j.amc.2004.08.004
[8] Oja P, Saveljeva D. Cubic spline collocation for Volterra integral equations. Computing, 2002, 69: 319–337 · Zbl 1239.45004 · doi:10.1007/s00607-002-1463-z
[9] Reihani M H, Abadi Z. Rationalized Haar functions method for solving Fredholm and Volterra integral equations. Journal of Computational and Applied Mathematics, 2007, 200: 12–20 · Zbl 1107.65122 · doi:10.1016/j.cam.2005.12.026
[10] Saberi-Nadjafi J, Tamamgar M. A generalized block-by-block method for solving linear Volterra integral equations. Applied Mathematics and Computation, 2007, 188: 1969–1974 · Zbl 1123.65125 · doi:10.1016/j.amc.2006.11.101
[11] Shaw S, Whiteman J R. Discontinuous Galerkin method with a posteriori L p(0; t i) error estimate for second-kind Volterra problems. Numer Math, 1996, 74: 361–383 · Zbl 0857.65144 · doi:10.1007/s002110050221
[12] Shen J, Tang T. Spectral and High-Order Methods with Applications. Beijing: Science Press, 2006 · Zbl 1234.65005
[13] Tang T. Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations. Numer Math, 1992, 61: 373–382 · Zbl 0741.65110 · doi:10.1007/BF01385515
[14] Tang T. A note on collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J Numer Anal, 1993, 13: 93–99 · Zbl 0765.65126 · doi:10.1093/imanum/13.1.93
[15] Tang T, Xu X, Cheng J. On spectral methods for Volterra type integral equations and the convergence analysis. Journal of Computational Mathematics (in press) · Zbl 1174.65058
[16] Tian H. Spectral Method for Volterra Integral Equation. MSc Thesis. Simon Fraser University, 1995
[17] Wang W. Mechanical algorithm for solving the second kind of Volterra integral equation. Appl Math Comput, 2006, 173: 1149–1162 · Zbl 1088.65121 · doi:10.1016/j.amc.2005.04.060
[18] Zhang S, Lin Y, Rao M. Numerical solutions for second-kind Volterra integral equations by Galerkin methods. Applications of Mathematics, 2005, 45(1): 19–39 · Zbl 1058.65148 · doi:10.1023/A:1022284616125
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.