×

zbMATH — the first resource for mathematics

Two-center overlap integrals, three dimensional adaptive integration, and prolate ellipsoidal coordinates. (English) Zbl 1404.65012
Summary: Numerical, adaptive algorithm evaluating the overlap integrals between the Numerical Type Orbitals (NTO) is presented. The described algorithm exploits the properties of the prolate ellipsoidal coordinates, which are the natural choice for two-center overlap integrals. The algorithm is designed for numerical atomic orbitals with the finite support. Since the cusp singularity of the atomic orbitals vanish in the prolate ellipsoidal coordinate system, the adaptive integration algorithm in \({\mathbb{R}^3}\) generates small number of subdivisions. The efficiency and reliability of the algorithm is demonstrated for the overlap integrals evaluated for the selected pairs of Slater Type Orbitals (STO).
MSC:
65D30 Numerical integration
41A55 Approximate quadratures
41A63 Multidimensional problems (should also be assigned at least one other classification number from Section 41-XX)
Software:
SIESTA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cramer Ch.J.: Essentials of Computational Chemistry. Wiley, Wiltshire (2004)
[2] Koch W., Holthausen M.C.: A Chemist’s Guide to Density Functional Theory. Wiley-VCH, New York (2000)
[3] Boys S.F.: Electronic wave functions I. A general method of calculation for the stationary states of any molecular system. Proc. Roy. Soc. A 200, 542 (1950) · Zbl 0040.28202 · doi:10.1098/rspa.1950.0036
[4] Matsuoka O.: Molecular integrals over real solid spherical Gaussian-type functions. J. Chem. Phys. 108, 1063–1067 (1998) · doi:10.1063/1.475468
[5] Helgaker T., Jorgensen P., Olsen J.: Molecular Electronic-Structure Theory. Wiley, New York (2000)
[6] Silverstone H.J.: On the evaluation of two-center overlap and coulomb integrals with non-integer-n Slater type orbitals. J. Chem. Phys. 45, 4337–4341 (1966) · doi:10.1063/1.1727493
[7] Todd H.D., Kay K.G., Silverstone H.J.: Unified treatment of two-center overlap, coulomb, and kinetic-energy integrals. J. Chem. Phys. 53, 3951–3956 (1970) · doi:10.1063/1.1673865
[8] Talman J.D.: Expressions for overlap integrals of slater orbitals. Phys. Rev. A 48, 243 (1993) · doi:10.1103/PhysRevA.48.243
[9] Filter E., Steinborn E.O.: Extremely compact formulas for molecular two-center one-electron integrals and coulomb integrals over slater-type atomic orbitals. Phys. Rev. A 18, 1 (1978) · Zbl 0376.33005 · doi:10.1103/PhysRevA.18.1
[10] Filter E., Steinborn E.O.: The three-dimensional convolution of reduced bessel functions and other functions of physical interest. J. Math. Phys. 19, 79 (1978) · Zbl 0376.33005 · doi:10.1063/1.523517
[11] Weniger E.J., Grotendorst J., Steinborn E.O.: Unified analytical treatment of overlap, two-center nuclear attraction, and coulomb integrals of b functions via the Fouriet transform method. Phys. Rev. A 33, 3688 (1986) · doi:10.1103/PhysRevA.33.3688
[12] Homeier H.H.H., Steinborn E.O.: On the evaluation of overlap integrals with exponential-type basis functions. Int. J. Quant. Chem. 42, 761 (1992) · doi:10.1002/qua.560420416
[13] Artacho E., Sánchez-Portal D., Ordejón P., García A., Soler J.M.: Linear-scaling ab-initio calculations for large and complex systems. Phys. Stat. Sol. (b) 215, 809 (1999) · doi:10.1002/(SICI)1521-3951(199909)215:1<809::AID-PSSB809>3.0.CO;2-0
[14] Soler J.S., Artacho E., Gale J.D., Garcia A., Junquera J., Ordejon P., Sanchez-Portal D.: The SIESTA method for ab initio order-N material simulation. J. Phys.: Condens. Mat. 14, 2745 (2002) · doi:10.1088/0953-8984/14/11/302
[15] Talman J.D.: Optimization of numerical orbitals in molecular MO-LCAO calculations. Int. J. Quant. Chem. 95, 442–450 (2003) · doi:10.1002/qua.10781
[16] Andrae D.: Numerical self-consistent field method for polyatomic molecules. Mol. Phys. 99, 327–334 (2001) · doi:10.1080/00268970010012608
[17] Ozaki T.: Variationally optimized atomic orbitals for large-scale electronic structures. Phys. Rev. B 67, 155108 (2003) · doi:10.1103/PhysRevB.67.155108
[18] Ozaki T., Kino H.: Numerical atomic basis orbitals from H to Kr. Phys. Rev. B 69, 195113 (2004) · doi:10.1103/PhysRevB.69.195113
[19] Becke A.D.: A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 88, 2547 (1988) · doi:10.1063/1.454033
[20] Delley B.: An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 92, 508 (1990) · doi:10.1063/1.458452
[21] Lin Z., Jaffe J.E., Hess A.C.: Multicenter integration scheme for electronic structure calculations of periodic and nonperiodic polyatomic systems. J. Phys. Chem. A 103, 2117–2127 (1999) · doi:10.1021/jp983668x
[22] Treutler O., Ahlrichs R.: Efficient molecular numerical integration schemes. J. Chem. Phys. 102, 346–354 (1995) · doi:10.1063/1.469408
[23] Yamamoto K., Ishikawa H., Fujima K., Iwasawa M.: An accurate single-center three-dimensional numerical integration and its application to atomic structure calculation. J. Chem. Phys. 106, 8769–8777 (1997) · doi:10.1063/1.473937
[24] Ishikawa H., Yamamoto K., Fujima K., Iwasawa M.: An accurate numerical multicenter integration for molecular orbital theory. Int. J. Quant. Chem. 72, 509–523 (1999) · doi:10.1002/(SICI)1097-461X(1999)72:5<509::AID-QUA4>3.0.CO;2-H
[25] Romanowski Z.: Numerical calculation of overlap and kinetic integrals in prolate spheroidal coordinates. Int. J. Quant. Chem. 108, 249–256 (2008) · doi:10.1002/qua.21485
[26] Romanowski Z.: Numerical calculation of overlap and kinetic integrals in prolate spheroidal coordinates, II. Int. J. Quant. Chem. 108, 487–492 (2008) · doi:10.1002/qua.21515
[27] Moon P., Spencer D.E.: A Field Theory Handbook: Including Coordinate Systems, Differential Equations and Their Solutions. Springer, Berlin (1971) · Zbl 0097.39403
[28] Flammer C.: Spheroidal Wave Functions. Stanford University Press, Stanford (1957) · Zbl 0078.05703
[29] Hobson E.W.: The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, Cambridge (1955) · Zbl 0004.21001
[30] Arfken G.B., Weber H.J.: Mathematical Methods for Physicists. Academic Press, San Diego (1995) · Zbl 0970.00005
[31] Mulliken R.S., Rieke C.A., Orloff D., Orloff H.: Formulas and numerical tables for overlap integrals. J. Chem. Phys. 17, 1248 (1949) · doi:10.1063/1.1747150
[32] Roothaan C.C.J.: A study of two-center integrals useful in calculations on molecular structure, I. J. Chem. Phys. 19, 1445 (1951) · Zbl 0045.28502 · doi:10.1063/1.1748100
[33] Dooren P., Ridder L.: An adaptive algorithm for numerical integration over an N-dimensional cube. J. Comput. Appl. Math. 2, 207–217 (1976) · Zbl 0334.65024 · doi:10.1016/0771-050X(76)90005-X
[34] Genz A.C., Malik A.A.: An adaptive algorithm for numerical integration over an N-dimensional rectangular region. J. Comput. Appl. Math. 6, 295–302 (1980) · Zbl 0443.65009 · doi:10.1016/0771-050X(80)90039-X
[35] Shapiro H.D.: Increasing robustness in global adaptive quadrature through interval selection heuristics. ACM Trans. Math. Softw. 10, 117–139 (1984) · Zbl 0542.65011 · doi:10.1145/399.400
[36] Rice J.R.: A metalgorithm for adaptive quadrature. J. ACM 92, 61–82 (1975) · Zbl 0368.65012 · doi:10.1145/321864.321870
[37] Stroud A.H.: Approximate Calculation of Multiple Integrals. Prentice-Hall, New York (1971) · Zbl 0379.65013
[38] Engels H.: Numerical Quadrature and Cubature. Academic Press, London (1980) · Zbl 0435.65013
[39] Cools R., Haegemans A.: On the construction of multi-dimensional embedded cubature formulae. Numer. Math. 55, 735–745 (1989) · Zbl 0671.65017 · doi:10.1007/BF01389339
[40] Rabinowitz P., Mantel F.: The application of integer programming to the computation of fully symmetric integration formulas in two and three dimensions, SIAM J. Numer. Anal. 14, 391–425 (1977) · Zbl 0361.90079 · doi:10.1137/0714024
[41] Espelid T.O.: On the construction of good fully symmetric integration rules. SIAM J. Numer. Anal. 24, 855–881 (1987) · Zbl 0651.41019 · doi:10.1137/0724055
[42] Steinborn E.O., Ruedenberg K.: Rotation and translation of regular and irregular solid spherical harmonics. Adv. Quant. Chem. 7, 1–81 (1973) · doi:10.1016/S0065-3276(08)60558-4
[43] Steinborn E.O.: Molecular integrals between real and between complex atomic orbitals. Adv. Quant. Chem. 7, 83–112 (1973) · doi:10.1016/S0065-3276(08)60559-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.