×

On the integrated Baskakov type operators. (English) Zbl 1180.41020

The paper is concerned with the sequence of Baskakov-Durrmeyer operators introduced by M. Heilmann and M. W. Müller [Numer. Funct. Anal. Optimization 10, No. 1–2, 127–138 (1989; Zbl 0644.41013)]. The authors investigate the rate of convergence in simultaneous approximation for functions having derivatives of bounded variation. Some improvements of the results of N. Deo [Appl. Math. Comput. 204, No. 1, 109–115 (2008; Zbl 1181.41040)] are also presented.

MSC:

41A36 Approximation by positive operators
41A30 Approximation by other special function classes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bai, G.-D.; Hua, Y. H.; Shaw, S. Y., Rate of approximation for functions with derivatives of bounded variation, Anal. Math., 28, 3, 171-196 (2002) · Zbl 1017.41013
[2] Deo, N., Direct results on exponential type operators, Appl. Math. Comput., 204, 1, 109-115 (2008) · Zbl 1181.41040
[3] Derriennic, M.-M., Sur l’approximation de functions integrable sur [0,1] par des polynomes de Bernstein modifies, J. Approx. Theory, 31, 323-343 (1981) · Zbl 0475.41025
[4] J.L. Durrmeyer, Une formule d’ inversion de la Transformee de Laplace, Applications a la Theorie des Moments, These de 3e Cycle, Faculte des Sciences de l’ Universite de Paris, 1967.; J.L. Durrmeyer, Une formule d’ inversion de la Transformee de Laplace, Applications a la Theorie des Moments, These de 3e Cycle, Faculte des Sciences de l’ Universite de Paris, 1967.
[5] Gupta, V., A note on modified Baskakov type operators, Approx. Theory Appl., 10, 3, 74-78 (1994) · Zbl 0823.41021
[6] Gupta, M. K.; Beniwal, M. S.; Goel, P., Rate of convergence for Szász-Mirakyan Durrmeyer operators with derivatives of bounded variation, Appl. Math. Comput., 199, 2, 828-832 (2008) · Zbl 1151.41012
[7] Gupta, V., Rate of convergence by Baskakov Beta operators, Mathematica, 37(60), 1-2, 109-117 (1995) · Zbl 0885.41017
[8] Gupta, V.; Gupta, P., Direct theorem in simultaneous approximation for Szasz-Mirakyan Baskakov type operators, Kyungpook Math. J., 41, 2, 243-249 (2001) · Zbl 0997.41011
[9] Gupta, V.; Maheshwari, P., On Baskakov-Szasz type operators, Kyungpook Math. J., 43, 3, 315-325 (2003) · Zbl 1145.41307
[10] Gupta, V.; Srivastava, G. S., Simultaneous approximation by Baskakov-Szasz type operators, Bull. Math. de la Soc. Sci. de Roumanie (N.S.), 37(85), 3-4, 73-85 (1993) · Zbl 0844.41014
[11] Gupta, V.; Srivastava, G. S., On convergence of derivatives by Szasz-Mirakyan-Baskakov type operators, Math. Student, 64, 1-4, 195-205 (1995) · Zbl 1194.41031
[12] Heilmann, M., Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl., 5, 1, 105-127 (1989) · Zbl 0669.41014
[13] Heilmann, M., On simultaneous approximation by the method of Baskakov-Durrmeyer operators, Numer. Funct. Anal. Optimiz., 10, 127-138 (1989) · Zbl 0644.41013
[14] Ispir, N.; Aral, A.; Dogru, O., On Kantorovich process of a sequence of generalized linear operators, Nonlinear Funct. Anal. Optimiz., 29, 5-6, 574-589 (2008) · Zbl 1152.41013
[15] Sinha, R. P.; Agrawal, P. N.; Gupta, V., On simultaneous approximation by modified Baskakov operators, Bull. Soc. Math. Belg. Ser. B, 43, 2, 217-231 (1991) · Zbl 0762.41022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.