zbMATH — the first resource for mathematics

Stability of Trojan planets in multi-planetary systems. (English) Zbl 1165.70019
Summary: Today there are more than 340 extra-solar planets in about 270 extra-solar systems confirmed. Besides the observed planets, there exists also the possibility of a Trojan planet moving in the same orbit as the Jupiter-like planet. In our investigation we take also into account the habitability of a Trojan planet and whether such a terrestrial planet stays in the habitable zone. Its stability was investigated for multi-planetary systems, where one of the detected giant planets moves partly or completely in the habitable zone. By using numerical computations, we studied the orbital behaviour up to \(10^7\) years and determined the size of the stable regions around the Lagrangian equilibrium points for different dynamical models for fictitious Trojans. We also examined the interaction of the Trojan planets with a second or third giant planet, by varying its semimajor axis and eccentricity. We have found two systems (HD 155358 and HD 69830) that can host habitable Trojan planets. Another aim of this work was to determine the size of the stable region around the Lagrangian equilibrium points in the restricted three-body problem for small mass ratios \(\mu\) of the primaries \(\mu \leq 0.001\) (e.g. Neptune mass of the secondary and smaller masses). We established a simple relation for the size depending on \(\mu\) and the eccentricity.

70F15 Celestial mechanics
70F07 Three-body problems
70K20 Stability for nonlinear problems in mechanics
Full Text: DOI
[1] Beaugé C., Sándor Zs., Érdi B., Süli Á.: Co-orbital terrestrial planets in exoplanetary systems: a formation scenario. Astron. Astrophys. 463, 359–367 (2007) · doi:10.1051/0004-6361:20066582
[2] Bennett A.: Characteristic exponents of the five equilibrium solutions in the elliptically restricted problem. Icarus 4, 177–190 (1965) · doi:10.1016/0019-1035(65)90060-6
[3] Bowell E., Holt H.E., Levy D.H., Innanen K.A., Mikkola S., Shoemaker E.M.: 1990 MB: the first Mars Trojan. BAAS 22(4), 1357–1369 (1990)
[4] Cresswell P., Nelson R.P.: On the evolution of multiple protoplanets embedded in a protostellar disc. Astron. Astrophys. 450, 833–945 (2006) · doi:10.1051/0004-6361:20054551
[5] Cresswell P., Nelson R.P.: On the growth and stability of Trojan planets. Astron. Astrophys. 493, 1141–1157 (2009) · Zbl 1160.85301 · doi:10.1051/0004-6361:200810705
[6] Cochran W.D., Endl M., Wittenmyer R.A., Bean J.L.: A planetary system around HD 155358: the lowest metallicity planet host star. Astroph. J. 665, 1407–1423 (2007) · doi:10.1086/519555
[7] Danby J.M.A.: Stability of the triangular points in the elliptic restricted problem of three bodies. Astrophys. J. 69, 165–179 (1964)
[8] Dvorak R., Pilat-Lohinger E., Schwarz R., Freistetter F.: Extrasolar Trojan planets close to habitable zones. Astron. Astrophys. 426, L37–L51 (2004) · doi:10.1051/0004-6361:200400075
[9] Dvorak R., Schwarz R., Süli Á., Kotoulas T.: On the stability of the Neptune Trojans. MNRAS 382, 1324–1343 (2007) · doi:10.1111/j.1365-2966.2007.12480.x
[10] Dvorak R., Lhotka Ch., Schwarz R.: Dynamics of inclined Neptune Trojans. Cel. Mech. Dynam. Astron. 102, 97–110 (2008) · Zbl 1154.70316 · doi:10.1007/s10569-008-9136-7
[11] Érdi B.: The motion of the perihelion of Trojan asteroids. Cel. Mech. Dynam. Astron. 20, 59–71 (1979) · Zbl 0419.70014
[12] Érdi B., Sándor Z.: Stability of co-orbital motion in exoplanetary systems. Cel. Mech. Dynam. Astron. 92, 113–123 (2005) · Zbl 1083.70015 · doi:10.1007/s10569-004-3114-5
[13] Érdi B., Nagy I., Sándor Zs., Süli Á., Fröhlich G.: Secondary resonances of co-orbital motions in exoplanetary systems. MNRAS 381, 33–45 (2007) · doi:10.1111/j.1365-2966.2007.12228.x
[14] Ford E.B., Gaudi B.S.: Observational constraints on Trojans of transiting extrasolar planets. Astroph. J. 652, 137–144 (2006) · doi:10.1086/510235
[15] Ford E.B., Holman M.J.: Using transit timing observations to search for Trojans of transiting extrasolar planets. Astroph. J. 664, 51–67 (2007) · doi:10.1086/520579
[16] Freistetter F.: The size of the stability regions of Jupiter Trojans. Astron. Astrophys. 453, 353–370 (2006) · doi:10.1051/0004-6361:20054689
[17] Goździewski K., Mikaszewski C., Musieliński A.: Stability constraints in modeling of multi-planet extrasolar systems. IAUS 249, 447–463 (2008)
[18] Hanslmeier A., Dvorak R.: Numerical integration with Lie series. Astron. Astrophys. 132, 203–222 (1984) · Zbl 0538.70020
[19] Ji J., Kinoshita H., Liu L., Li G.: The secular evolution and architecture of the Neptunian triplet planetary system HD69830. Astroph. J. 657, 1092–1109 (2007) · doi:10.1086/510556
[20] Kasting J.F., Whitmire D.P., Reynolds R.T.: Habitable zones around main sequence stars. Icarus 101, 108–141 (1993) · doi:10.1006/icar.1993.1010
[21] Laughlin G., Chambers J.E.: Extrasolar Trojans: the viability and detectability of planets in the 1:1 resonance. Astrophys. J. 124, 592–606 (2002)
[22] Lichtenegger H.: The dynamics of bodies with variable masses. Cel. Mech. Dynam. Astron. 34, 357–376 (1984) · Zbl 0571.70028
[23] Lohinger, E.: Stabilitätsbereiche um L4 und L5 des eingeschränkten Dreikörperproblems für verschiedene Massenverhältnisse. Diploma thesis, University of Vienna, (1991)
[24] Lohinger E., Dvorak R.: Stability regions around L4 in the elliptic restricted problem. Astron. Astrophys. 280, 683–696 (1993)
[25] Marchal C.: The Three-Body Problem, vol. 192. Elsevier, New York (1991) · Zbl 0719.70006
[26] Markellos, V.V., Papadakis, K.E., Perdios, E.A.: Non-linear stability zones around the triangular Lagrangian points. In: Roy, A.E, Steves, B.A From Newton to Chaos, pp. 371–377. Plenum Press, New York (1995) · Zbl 0871.70011
[27] Marzari F., Scholl H.: The growth of Jupiter and Saturn and the capture of Trojans. Astron. Astrophys. 339, 278–285 (1998)
[28] Morbidelli A., Levison H.F., Tsiganis K., Gomes R.: Chaotic capture of Jupiter’s Trojan asteroids in the early Solar System. Nature 435, 462–485 (2005) · doi:10.1038/nature03540
[29] Nauenberg M.: Stability and eccentricity for two planets in a 1:1 resonance, and their possible occurence in extrasolar planetary systems. Astrophys. J. 124, 2332–2351 (2002)
[30] Pittichova, J.A., Meech, K.J., Wasserman, L.H., Trilling, D.E., Millis, R.L., Buie, M.W., Kern, S.D., Clancy, K.B., Hutchison, L.E., Chiang, E., Marsden, B.G.: 2001 QR322. MPEC, 2003-A55 (2003)
[31] Robutel P., Gabern F., Jorba A.: The observed Trojans and the global dynamics around the Lagrangian points of the Sun Jupiter System. Cel. Mech. Dynam. Astron. 92, 53–89 (2005) · Zbl 1083.70019 · doi:10.1007/s10569-004-5976-y
[32] Schwarz R.: Global stability of L4 and L5 Trojans. PHD thesis, University of Vienna. Online database at: http://media.obvsg.at/dissd (2005)
[33] Schwarz R., Pilat-Lohinger E., Dvorak R., Érdi B., Sándor Zs.: Trojans in habitable zones. Astrobiol. J. 5, 579 (2005) · doi:10.1089/ast.2005.5.579
[34] Schwarz R., Dvorak R., Pilat Lohinger E., Süli Á., Érdi B.: Trojan planets in HD108874?. Astron. Astrophys. 462, 1165–1171 (2007a) · doi:10.1051/0004-6361:20066284
[35] Schwarz R., Dvorak R., Süli Á., Érdi B.: Survey of the stability region of hypothetical habitable Trojan planets. Astron. Astrophys. 474, 1023–1046 (2007b) · doi:10.1051/0004-6361:20077994
[36] Schwarz R., Dvorak R., Süli Á., Érdi B.: Stability of fictitious Trojan planets in extrasolar systems. Astron. Notes 328, 785–799 (2007c) · doi:10.1002/asna.200710789
[37] Thommes E.W.: A safety net for fast migrators: interactions between gap-opening and sub-gap-opening bodies in a protoplanetary disk. Astroph. J. 626, 1033–1056 (2005) · doi:10.1086/429913
[38] Valenti J., Fischer D.: Stellar metallicity and planet formation. Astron. Soc. Pacific Conf. Series 384, 292–304 (2008)
[39] Wolf M.: Wiederauffindung des Planeten (588) [1906 TG]. Astron. Notes 174, 47–65 (1907) · doi:10.1002/asna.19071740304
[40] Wasserman, L.H., Chiang, E., Jordan, A.B., Ryan, E.L., Buie, M.W., Millis, R.L., Kern, S.D., Elliot, J.L., Washburn, K.E., Marsden, B.G.: 2001 QQ322. MPEC. 2001-V11 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.