×

Existence of slow solutions for a class of differential inclusions. (English) Zbl 0558.34011

The author gives sufficient conditions for the existence of slow- solutions of a class of differential inclusions, as well as sufficient conditions for the existence of a unique classical solution and a unique slow-solution.
Reviewer: F.Brauer

MSC:

34A60 Ordinary differential inclusions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Arrow, K.J; Hahn, F, General competitive analysis, (1971), Holden-Day San Francisco · Zbl 0311.90001
[2] Arrow, K.J; Hurwicz, L; Uzawa, H, Studies in linear and non-linear programming, (1958), Stanford Univ. Press Stanford, Calif · Zbl 0091.16002
[3] Attouch, H; Damlamian, A, On multivalued evolution equations in Hilbert spaces, Israel J. math., 12, 373-390, (1972) · Zbl 0243.35080
[4] Aubin, J.P; Cellina, A; Nohel, J, Monotone trajectories of multivalued dynamical systems, Ann. mat. pura appl., 99-117, (1977) · Zbl 0392.49019
[5] Berge, C, Espaces topologiques, fonctions multivoques, (1966), Dunod Paris · Zbl 0164.52902
[6] Bouligand, G, Introduction a la géométrie infinitésimale, (1932), Gauthier-Villars Paris · JFM 58.0086.03
[7] Brézis, H, Opérateurs maximaux monotones et semi-groupes de contractions dans LES espaces de Hilbert, (1973), North-Holland Amsterdam · Zbl 0252.47055
[8] Castaing, C; Valadier, M, Equations différentielles multivoques dans LES espaces localement convexes, Rev. inform. rech. oper., 16, 3-16, (1969) · Zbl 0186.21004
[9] Cellina, A, Multivalued differential equations and ordinary differential equations, SIAM J. appl. math., 18, 533-538, (1970) · Zbl 0191.38802
[10] Champsaur, P; Drèze, J; Henry, C, Stability theorems with economic applications, Econometrica, 45, 273-294, (1977) · Zbl 0375.90008
[11] Clarke, F, Generalized gradients and applications, Trans. amer. math. soc., 205, 247-262, (1975) · Zbl 0307.26012
[12] Clarke, F, Generalized gradients of Lipschitz functionals, Adv. in math., 40, 52-67, (1981) · Zbl 0463.49017
[13] Cornet, B, Théorie mathématique des mécanismes dynamiques d’allocation des ressources, ()
[14] Gautier, S, Equations différentielles multivoques sur un fermé, working paper, (1976), Université de Pau France
[15] Haddad, G, Monotone trajectories of differential inclusions and functional differential inclusions with memory, Israel J. math., 39, 83-100, (1981) · Zbl 0462.34048
[16] Haddad, G, Topological properties of the set of solutions for functional differential inclusions, Nonlinear anal., 5, 1349-1366, (1981) · Zbl 0496.34041
[17] Henry, C, Differential equations with discontinuous right-hand sides for planning procedures, J. econom. theory, 4, 545-551, (1972)
[18] Henry, C, An existence theorem for a class of differential equations with multivalued right-hand sides, J. math. anal. appl., 41, 179-186, (1973) · Zbl 0262.49019
[19] Janin, R, Sur la dualité et la sensibilité dans LES problèmes de programmation mathématique, ()
[20] Lasota, A; Opial, Z, An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations, Bull. acad. polon. sci., 13, 781-786, (1965) · Zbl 0151.10703
[21] Lasry, J.M; Robert, R, Acyclicité de 1’ensemble des solutions de certaines equations fonctionnelles, C. R. acad. sci., ser. A, 282, 1283-1286, (1976) · Zbl 0347.47034
[22] Malivert, C, Méthodes de descente sur un fermé non convexe, (), 113-124 · Zbl 0416.49020
[23] Moreau, J.J, Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires, C. R. acad. sci., 225, 238-240, (1962) · Zbl 0109.08105
[24] Rockafellar, R.T, Convex analysis, (1970), Princeton Univ. Press Princeton, N. J · Zbl 0202.14303
[25] Rockafellar, R.T, Clarke’s tangent cones and the boundaries of closed sets in \(R\)^{n}, Nonlinear anal., 3, 145-154, (1979) · Zbl 0443.26010
[26] Vial, J.P, Strong and weak convexity of sets and functions, Math. oper. res., 8, 231-259, (1983) · Zbl 0526.90077
[27] Yosida, K, Functional analysis, (1974), Springer-Verlag Berlin/New York · Zbl 0217.16001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.