×

Regular compact factorization of integral operators in \(L_ p\). (English) Zbl 0558.45013

Translation from Mat. Zametki 32, No.5, 601-606 (Russian) (1982; Zbl 0537.45013)].

MSC:

45P05 Integral operators
47Gxx Integral, integro-differential, and pseudodifferential operators
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
47A68 Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators
47B38 Linear operators on function spaces (general)

Citations:

Zbl 0537.45013
Full Text: DOI

References:

[1] V. B. Korotkov, ?Integral and partially integral operators,? Sib. Mat. Zh.,19, No. 1, 70-90 (1978). · Zbl 0386.47013
[2] E. M. Nikishin, ?Resonance theorems and superlinear operators,? Usp. Mat. Nauk,25, No. 6, 129-191 (1970). · Zbl 0222.47024
[3] M. A. Krasnosel’skii, P. P. Zabreiko, E. I. Pustyl’nik, and P. E. Sobolevskii, Integral Operators in Spaces of Summable Functions [in Russian], Nauka, Moscow (1966).
[4] B. Maurey, ?Theoremes de Nikishin: theoremes de factorisation pour les applications lineares a valeurs dans un espaces L0(?,?),? in: Seminaire Maurey-Schwartz, Espace LP, Applications Radonifiantes et Geometrie des Espaces de Banach, Ecole Polytechnique, Paris, 1972-1973, Exp. No. 12.
[5] P. R. Halmos, Measure Theory, Van Nostrand, Princeton (1950).
[6] N. Aronszajn and P. Szeptycki, ?On general integral transformations,? Math. Ann.,163, No. 2, 127-154 (1966). · Zbl 0171.12402 · doi:10.1007/BF02052846
[7] S. Kaczmarsh and H. Steinhaus, Theory of Orthogonal Series [in German], Chelsea Publ.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.