Mattila, Kirsti Complex strict and uniform convexity and hyponormal operators. (English) Zbl 0558.47020 Math. Proc. Camb. Philos. Soc. 96, 483-493 (1984). A report of this paper [Rep., Dept. Math., Univ. Stockholm 15 (1983)] was reviewed in Zbl 0516.47014. One of the main results in the report was that the trace class is uniformly c-convex. In the present paper the proof of this theorem is improved by improving the preceding inequality for trace class operators. In addition some smaller changes have been made in the report. A more general result of U. Haagerup on the convexity of the dual space of a \(C^*\)-algebra has appeared in the paper of W. J. Davis, D. J. H. Garling and N. Tomczak-Jaegermann [J. Funct. Anal. 55, 110-150 (1984)]. Cited in 11 Documents MSC: 47B20 Subnormal operators, hyponormal operators, etc. 47B10 Linear operators belonging to operator ideals (nuclear, \(p\)-summing, in the Schatten-von Neumann classes, etc.) 47L07 Convex sets and cones of operators 47B47 Commutators, derivations, elementary operators, etc. 47A12 Numerical range, numerical radius Keywords:numerical range; hyponormal; trace class is uniformly c-convex Citations:Zbl 0516.47014 PDF BibTeX XML Cite \textit{K. Mattila}, Math. Proc. Camb. Philos. Soc. 96, 483--493 (1984; Zbl 0558.47020) Full Text: DOI References: [1] DOI: 10.1007/BF01442484 · Zbl 0458.47021 [2] Schatten, Norm, Ideals of Completely Continuous Operators (1960) [3] McCarthy, c 5 pp 249– (1967) [4] Bonsall, Numerical Ranges II 10 (1973) [5] Bonsall, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras 2 (1971) · Zbl 0207.44802 [6] DOI: 10.1007/BF01351700 · Zbl 0305.47024 [7] Berkson, Rev. Roumaine Math. Pures Appl. 24 pp 863– (1979) [8] DOI: 10.1112/plms/s3-24.1.101 · Zbl 0225.46021 [9] DOI: 10.2307/2033572 · Zbl 0092.32004 [10] DOI: 10.1007/BF02760559 · Zbl 0544.47018 [11] de Barra, Proc. Roy. Irish Acad. Sect. A 72 pp 149– (1972) [12] Akemann, Pacific J. Math. 32 pp 575– (1970) · Zbl 0194.44204 [13] Mattila, Dept. Math. Univ. of Stockholm. 15 (1983) [14] DOI: 10.1016/0021-9045(75)90092-1 · Zbl 0314.41022 [15] Kyle, Proc. Edinburgh Math. Soc. 21 pp 33– (1978) [16] Ho, Tamkang J. Math. 6 pp 191– (1975) [17] DOI: 10.2307/2040227 · Zbl 0307.46015 [18] DOI: 10.1007/BF02774015 · Zbl 0544.46012 [19] DOI: 10.1007/BF01431092 · Zbl 0305.47014 [20] Crabb, Glasgow Math. J. 18 pp 197– (1977) [21] DOI: 10.2307/2036818 · Zbl 0199.19302 [22] DOI: 10.2307/2035432 · Zbl 0185.20102 [23] Takahashi, Acta Sci. Math. (Szeged) 43 pp 123– (1981) [24] Shaw, J. Austral. Math. Soc. 36 pp 134– (1984) [25] DOI: 10.2307/2044108 · Zbl 0479.47019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.