zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Completeness in semimetric spaces. (English) Zbl 0558.54019
This interesting paper compares various forms of completeness in semimetric spaces in face of certain ”continuity properties” of distance functions. Two such properties are developability: lim d(x${}\sb n,p)=\lim d(y\sb n,p)=0$ implies lim d(x${}\sb n,y\sb n)=0$, and 1- continuity: for any q, lim d(x${}\sb n,p)=0$ implies lim d(x${}\sb n,q)=d(p,q)$. And two of the authors’ main results are as follows. Theorem: For any 1-continuous semimetric d, a semimetrizable space is d- Cauchy complete if and only if it is d-weakly complete in the sense of {\it L. F. McAuley} (ibid. 6, 315-326 (1956; Zbl 0072.178)]. Theorem: A semimetrizable space may be Cauchy complete and developable and yet admit no semimetric which is (simultaneously) Cauchy complete and developable.
Reviewer: P.J.Collins

54E25Semimetric spaces
Full Text: DOI