Conservative diffusions. (English) Zbl 0558.60059

This paper treats a mathematical problem arising in Nelson’s stochastic mechanics; the main result is an existence and uniqueness theorem for diffusions with extremely singular coefficients. The method of proof is based on several energy integral estimates derived here, and it can be considered as a time dependent generalization of the Dirichlet form method of constructing symmetric diffusion processes.
Further discussion and a cleaner proof that the path space measures constructed here are actually the laws of diffusion processes with the formally correct generator may be found in the author’s contribution to the BiBoS I symposium proceedings, to appear in Springer Lecture Notes in Mathematics.


60J60 Diffusion processes
60K35 Interacting random processes; statistical mechanics type models; percolation theory
Full Text: DOI


[1] Nelson, E.: Quantum Pluctuations. Princeton: Princeton University Press 1984
[2] Guerra, F., Morato, L.: Quantization of dynamical systems and stochastic control theory. Phys. Rev.D27, 1774-1786 (1983)
[3] Fényes, I.: Eine wahrsheinlichkeitstheoretische Begründung und Interpretation der Quantenmechanik. Z. Phys.132, 81-106 (1952) · Zbl 0048.44201 · doi:10.1007/BF01338578
[4] Nelson, E.: Derivation of the Schrödinger equation from Newtonian mechanics. Phys. Rev.150, 1079-1085 (1966) · doi:10.1103/PhysRev.150.1079
[5] Yasue, K.: Stochastic calculus of variations. J. Funct. Anal.41, 327-340 (1981) · Zbl 0482.60063 · doi:10.1016/0022-1236(81)90079-3
[6] Zambrini, J.: Preprint (to appear)
[7] Zheng, W., Meyer, P.: Quelques resultats de ?Mecanique Stochastique.? Preprint to appear in Semiaire de Probabilités XVII, J. Azéma ed., Berlin, Heidelberg. New York: Springer 1984
[8] Albeverio, S., Høegh-Krohn, R.: A remark on the connection between stochastic mechanics and the heat equation. J. Math. Phys.15, 1745-1747 (1974) · Zbl 0291.60028 · doi:10.1063/1.1666536
[9] Carmona, R.: Processus de diffusion gouverné par la form de Dirichlet de I’operateur de Schrödinger. In Seminaire de Probabilités XIII, C Dellacherie, Meyer, P. A., Weil, M. (eds.), Berlin, Heidelberg, New York: Springer 1979 · Zbl 0401.60084
[10] Nelson, E.: Critical diffusions. Preprint to appear in Seminaire de Probabilités XVIII, Azéma, J. (ed.). Berlin Heidelberg, New York: Tokyo Springer 1985
[11] Strook, D., Varadhan, S.: Multidimensional Diffusion Processes. Berlin, Heidelberg, New York: Springer 1979
[12] Reed, M., Simon, B.: Methods of modern mathematical physics, Vol. 2, New York: Academic Press 1975 · Zbl 0308.47002
[13] Bochner, S., Von Neumann, J.: On compact solutions of operator differential equations I. Ann. Math. Ser. 2,36, 255-291 esp. 263 (1935) · Zbl 0011.02002 · doi:10.2307/1968678
[14] Doob, J.: Stochastic processes depending on a continuous parameter. Trans. Am. Math. Soc.42, 107-140 (1937) · doi:10.1090/S0002-9947-1937-1501916-1
[15] Kato, T.: Some inequalities for linear operators. Math. Ann.125, 208-212 (1952) · Zbl 0048.35301 · doi:10.1007/BF01343117
[16] Radin, C., Simon, B.: Invariant domains for the time dependent Schrödinger equation. J. Diff. Eqn.29, 289-296 (1978) · doi:10.1016/0022-0396(78)90127-4
[17] Nelson, E.: Les écoulements incompressibles d’énergie finie, Colloques internationaux du Centre national de la recherche scientifique No 117, Les équations aux dérivées partielles, Editions du C.N.R.S., Paris, 1962.
[18] Lions, J.: Equations differentielles operationelles et problèms aux limits. Berlin, Heidelberg, New York: Springer 1961
[19] Nelson, E.: Regular probability measures on function space. Ann. Math.69, 630-643 (1959) · Zbl 0087.13102 · doi:10.2307/1970027
[20] Nelson, E.: Feynman integrals and the Schrödinger equation. J. Math. Phys.5, 332-343, esp 339 (1964) · Zbl 0133.22905 · doi:10.1063/1.1704124
[21] Dankel, T.: Mechanics on manifolds and the incorporation of spin into Nelson’s stochastic mechanics. Arch. Rat. Mech. Anal.37, 192-222 (1970) · Zbl 0199.28201 · doi:10.1007/BF00281477
[22] Shucker, D.: Stochastic mechanics of systems with zero potential. J. Funct. Anal.38, 146-155 (1980) · Zbl 0447.60042 · doi:10.1016/0022-1236(80)90061-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.