zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The stable range of $C\sp*$-algebras. (English) Zbl 0559.46025
For any $C\sp*$-algebra A with 1 it is proved that its stable range (introduced by H. Bass for any ring A) equals its topological stable range (introduced by M. A. Rieffel for topological rings A). This extends an old result of Vaserstein on commutative $C\sp*$-algebras. The example of the disc algebra shows that the result cannot be extended to commutative Banach algebras.

MSC:
46L05General theory of $C^*$-algebras
46M20Methods of algebraic topology in functional analysis
18F25Algebraic $K$-theory and $L$-theory
WorldCat.org
Full Text: DOI EuDML
References:
[1] Bass, H.:K-theory and stable algebra. Publ. Math. IHES22, 5-60 (1964) · Zbl 0248.18025
[2] Blackadar, B.: A stable cancellation theorem for simpleC *-algebras*. Proc. London Math. Soc. (3)47, 303-307 (1983) · Zbl 0541.46056 · doi:10.1112/plms/s3-47.2.303
[3] Handelman, D.G.: Stable range inAW *-algebras. Proc. Amer. Math. Soc.76, 241-249 (1979) · Zbl 0427.46040
[4] Kadison, R.V., Ringrose, J.R.: Fundamentals of Operator Algebras I. New York: Academic Press 1982
[5] Menal, Pere Moncasi, J.: On regular rings with stable range 2. Journal of Pure and Applied Algebra24, 25-40 (1982) · Zbl 0484.16006 · doi:10.1016/0022-4049(82)90056-1
[6] Rieffel, M.A.: Dimension and stable rank in theK-theory ofC *-algebras. Proc. London Math. Soc. (3)46, 301-333 (1983) · Zbl 0533.46046 · doi:10.1112/plms/s3-46.2.301
[7] Rieffel, M.A.: The cancellation theorem for projective modules over irrational rotationC *-algebras. Proc. London Math. Soc. (3)47, 285-382 (1983) · Zbl 0541.46055 · doi:10.1112/plms/s3-47.2.285
[8] Robertson, A.G.: Stable range inC *-algebra Math. Proc. Comb. Phil. Soc.87, 413-418 (1980) · Zbl 0429.46036 · doi:10.1017/S030500410005684X
[9] Suslin, A.A., Vaserstein, L.N.: Serre’s problem on projective modules over polynomial rings and algebraicK-theory. Izv. Akad. Nauk.40 (5), 87-149 (1976); In Russian, translated in Math. USSR Izvestija10, (No. 5) (1976) · Zbl 0338.13015
[10] Vaserstein, L.N.: Stable range of rings and dimension of topological spaces. Funk. An. Pril.5 (2) 17-27 (1971), (in Russian, translated in Funct. An. Appl.) · Zbl 0239.16028
[11] Vaserstein, L.N.:K-theory and the congruence subgroup problem. Math. Zametki5 (2) 233-244 (1969); In Russian, translated in Math. Notes · Zbl 0279.20037
[12] Vaserstein, L.N.: On stabilization for Milnor functorK 2, Uspekhi Mat. Nauk.30 (1) 224 (1975) (in Russian)