Masol, V. I.; Popereshnyak, S. V. A theorem on the distribution of the rank of a sparse Boolean random matrix and some applications. (Ukrainian, English) Zbl 1199.60028 Teor. Jmovirn. Mat. Stat. 76, 92-104 (2007); translation in Theory Probab. Math. Stat. 76, 103-116 (2008). Summary: We consider some estimates of the rate of convergence of the distribution of a sparse Boolean random matrix to the Poisson distribution. The results obtained in the paper are applied to estimate the probability that a nonhomogeneous system of Boolean random linear equations is consistent. MSC: 60C05 Combinatorial probability 15B52 Random matrices (algebraic aspects) 60F17 Functional limit theorems; invariance principles Keywords:sparse Boolean random matrix; Poisson distribution; rate of convergence Citations:Zbl 0184.41602; Zbl 0997.05001; Zbl 0842.60009 PDFBibTeX XMLCite \textit{V. I. Masol} and \textit{S. V. Popereshnyak}, Teor. Ĭmovirn. Mat. Stat. 76, 92--104 (2007; Zbl 1199.60028); translation in Theory Probab. Math. Stat. 76, 103--116 (2008) Full Text: Link