×

zbMATH — the first resource for mathematics

Spatial and temporal characteristics of OH in turbulent opposed-jet double flames. (English) Zbl 1259.80019
Summary: Simultaneous high repetition-rate, two-point hydroxyl (OH) time-series measurements with associated PLIF/PIV measurements are employed to investigate spatio-temporal scales and flame-velocity interactions in turbulent opposed jets sustaining methane-air double flames. For a fuel-side equivalence ratio, \(\varphi _{B } = 1.2\), a rich premixed flame exists on the fuel side while a diffusion flame exists on the air side of the stagnation plane. The bulk Reynolds number (Re) and strain rate (SR) can be adjusted to generate flames at \(\varphi _{B } = 1.2\) with both well separated and completely merged flame fronts. Simultaneous PLIF/PIV measurements highlight distinct spatial OH structures of the premixed and diffusive fronts corresponding to variations in the flow field. The self-propagating tendency of the rich premixed front causes large-scale wrinkling, thereby enhancing the OH contour length by \(15\%\) as compared to the diffusive front. Two-point OH time-series measurements are implemented to quantify both spatial and temporal fluctuations via study of radial length and time scales. In general, these integral length and time scales follow similar trends and reach a minimum at the axial location of peak [OH]. In comparison to merged double flames having higher Re and SR, greater OH fluctuations are observed in the rich-premixed front as compared to the diffusive front for a well separated double flame. Because of the developing turbulence, the OH length scales exhibit reduced axial gradients across the reaction zone for higher Re in comparison to lower Re. A stochastic time-series simulation, using a state relationship based on a joint mixture fraction and progress variable, is utilized to extract estimated scalar time scales from those of measured OH. The simulations indicate that the hydroxyl fluctuations in double flames are only twice those of the underlying conserved scalar.
MSC:
80A30 Chemical kinetics in thermodynamics and heat transfer
Software:
OPPDIF
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rangel, L.P., Fletcher, L.M., Pourkashanian, M., Williams, A.: Fundamental studies of a partial premixed counter-flow combustion system and its effect on NOx emissions. Combust. Sci. Technol. 178, 1457–1476 (2006) · doi:10.1080/00102200600721255
[2] Naha, S., Aggarwal, S.K.: Fuel effects on NOx emissions in partially premixed flames. Combust. Flame 139, 90–105 (2004) · doi:10.1016/j.combustflame.2004.07.006
[3] Blevins, L.G., Gore, J.P.: Computed structure of low strain rate partially premixed CH4/air counterflow flames: implications for NO formation. Combust. Flame 116, 546–556 (1999) · doi:10.1016/S0010-2180(98)00059-5
[4] Tanoff, M.A., Smooke, M.D., Osborne, R.J., Brown, T.M., Pitz, R.W.: The sensitive structure of partially premixed methane-air vs. air counterflow flames. Proc. Combust. Inst. 26, 1121–1128 (1996)
[5] Katta, V.R., Hu, S., Wang, P., Pitz, R.W., Roquemore, W.M., Gord, J.R.: Investigations on double-state behavior of the counterflow premixed flame system. Proc. Combust. Inst. 31, 1055–1066 (2007) · doi:10.1016/j.proci.2006.08.028
[6] Korusoy, E., Whitelaw, J.H.: Extinction and relight in opposed flames. Exp. Fluids 33, 75–89 (2004) · Zbl 1060.76556
[7] Kostiuk, L.W., Bray, K.N.C., Cheng, R.K.: Experimental study of premixed turbulent combustion in opposed streams. Part II–reacting flow field and extinction. Combust. Flame 92, 396–409 (1993) · doi:10.1016/0010-2180(93)90151-R
[8] Sardi, E., Whitelaw, J.H.: Extinction time scale of periodically strained, lean counterflow flames. Exp. Fluids 27, 199–209 (1999) · doi:10.1007/s003480050345
[9] Yamaoka, I., Tsuji, H.: Flame structure of rich methane air counter flow flame. Proc. Combust. Inst. 16, 1145–1154 (1977)
[10] Sato, J.: Effect of Lewis number on extinction behaviour of premixed flames in a stagnation flow. Proc. Combust. Inst. 19, 1541–1548 (1982)
[11] Yamaoka, I., Tsuji, H.: The effect of back-diffusion of intermediate hydrogen on methane-air and propane-air flames diluted with nitrogen in a stagnating flow. Combust. Flame 86, 135–146 (1991) · doi:10.1016/0010-2180(91)90061-F
[12] Ghenai, C., Gökalp, I.: Correlation coefficients of the fluctuating density in turbulent premixed flames. Exp. Fluids 24, 347–353 (1998) · doi:10.1007/s003480050182
[13] Kojima, J., Ikeda, Y., Nakajima, T.: Multi-point time-series observation of optical emissions for flame-front motion analysis. Meas. Sci. Technol. 14, 1714–1724 (2003) · doi:10.1088/0957-0233/14/9/324
[14] Dasch, C.J.: One-dimensional tomography: a comparison of Abel, onion peeling, and filtered back-projection methods. Appl. Opt. 31, 1146–1152 (1992) · doi:10.1364/AO.31.001146
[15] Wang, G.H., Clemens, N.T., Varghese, P.L.: High-repetition rate measurements of temperature and thermal dissipation in a nonpremixed turbulent jet flame. Proc. Combust. Inst. 30, 691–699 (2005) · doi:10.1016/j.proci.2004.08.269
[16] Zhang, J., Venkatesan, K.K., King, G.B., Laurendeau, N.M., Renfro, M.W.: Two-point time-series measurements of minor-species concentrations in a turbulent nonpremixed flame. Opt. Lett. 30, 3144–3146 (2005) · doi:10.1364/OL.30.003144
[17] Venkatesan, K.K., Zhang, J., King, G.B., Laurendeau, N.M., Renfro, M.W.: Hydroxyl space-time correlation measurements in partially premixed turbulent opposed-jet flames. Applied Physics B 89, 129–140 (2007) · doi:10.1007/s00340-007-2753-0
[18] Böhm, B., Geyer, D., Dreizler, A., Venkatesan, K.K., Laurendeau, N.M., Renfro, M.W.: Simultaneous PIV/PTV/OH PLIF imaging: conditional flow field statistics in partially premixed turbulent opposed-jet flames. Proc. Combust. Inst. 31, 709–717 (2007) · doi:10.1016/j.proci.2006.07.057
[19] Peters, N.: Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21, 1231–1250 (1986)
[20] Fiorina, B., Gicquel, O., Vervisch, L., Carpentier, S., Darabiha, N.: Approximating the chemical structure of partially premixed and diffusion counterflow flames using FPI flamelet tabulation. Combust. Flame 140, 147–160 (2005) · doi:10.1016/j.combustflame.2004.11.002
[21] Renfro, M.W., Gore, J.P., Laurendeau, N.M.: Scalar time-series simulations for turbulent nonpremixed flames. Combust. Flame 129, 120–135 (2002) · doi:10.1016/S0010-2180(01)00365-0
[22] Venkatesan, K.K., King, G.B., Laurendeau, N.M., Renfro, M.W.: Hydroxyl time-scale correlations in turbulent counterflow nonpremixed flames. Combust. Sci. Technol. 179, 787–811 (2007) · doi:10.1080/00102200601146510
[23] Prasad, R.O.S., Paul, R.N., Sivathanu, Y.R., Gore, J.P.: An evaluation of combined flame surface density and mixture fraction models for nonisenthalpic premixed turbulent flames. Combust. Flame 117, 514–530 (1999) · doi:10.1016/S0010-2180(98)00115-1
[24] Ji, J., Sivathanu, Y.R., Gore, J.P.: Thin filament pyrometry for flame measurements. Proc. Combust. Inst. 28, 391–398 (2000) · doi:10.1016/S0082-0784(00)80235-0
[25] Guttenfelder, W.A., King, G.B., Gore, J.P., Laurendeau, N.M., Renfro, M.W.: Hydroxyl time series measurements and simulations for turbulent premixed jet flames in the thickened preheat regime. Combust. Flame 123, 389–401 (2003)
[26] Geyer, D., Kempf, A., Dreizler, A., Janicka, J.: Scalar dissipation rates in isothermal and reactive turbulent opposed-jets: 1D-Raman/Rayleigh experiments supported by LES. Proc. Combust. Inst. 30, 681–690 (2005) · doi:10.1016/j.proci.2004.08.216
[27] Renfro, M.W., Guttenfelder, W.A., King, G.B., Laurendeau, N.M.: Scalar time-series measurements in turbulent CH4/H2/N2 nonpremixed flames: OH. Combust. Flame 123, 389–401 (2000) · doi:10.1016/S0010-2180(00)00184-X
[28] Lutz, A.E., Kee, R.J., Grcar, J.F.: OPPDIF: A Fortran program for computing opposed flow diffusion flames. Sandia National Laboratories Report No. SAND96–8243 (1990)
[29] Bilger, R.W.: Turbulent flows with nonpremixed reactants. Top. Appl. Phys. 44, 2–36 (1980)
[30] Omar, S.K., Geyer, D., Dreizler, A., Janicka, J.: Investigation of flame structures in turbulent partially premixed counterflow flames using planar laser-induced fluorescence. Prog. Comput. Fluid Dyn. 4, 241–249 (2004) · doi:10.1504/PCFD.2004.004092
[31] Cho, P., Law, C.K., Cheng, R.K., Shepherd, I.G.: Velocity and scalar fields of turbulent premixed flames in stagnation flow. Proc. Combust. Inst. 22, 739–745 (1988)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.