×

Base wavelet selection for bearing vibration signal analysis. (English) Zbl 1310.94031

Summary: A critical issue to ensuring the effectiveness of wavelet transform in machine condition monitoring and health diagnosis is the choice of the most suited base wavelet for signal decomposition and feature extraction. This paper addresses this issue by introducing a quantitative measure to select an appropriate base wavelet for analyzing vibration signals measured on rotary mechanical systems. Specifically, the measure based on energy-to-Shannon entropy ratio has been investigated. Both the simulated Gaussian-modulated sinusoidal signal and an actual ball bearing vibration signal have been used to evaluate the effectiveness of the developed measure on base wavelet selection. Experimental results demonstrate that the wavelet selected using the developed measure is better suited than other wavelets in diagnosing structural defects in the bearing. The method developed provides systematic guidance in wavelet selection.

MSC:

94A12 Signal theory (characterization, reconstruction, filtering, etc.)
65T60 Numerical methods for wavelets
94A17 Measures of information, entropy
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/S0007-8506(07)60503-4 · doi:10.1016/S0007-8506(07)60503-4
[2] Ganesan R., IIE Trans. Qual. Reliab. Eng. 36 pp 787–
[3] DOI: 10.1115/1.1707035 · doi:10.1115/1.1707035
[4] DOI: 10.1504/IJMR.2006.010701 · doi:10.1504/IJMR.2006.010701
[5] Mallat S., A Wavelet Tour of Signal Processing (1999) · Zbl 0945.68537
[6] DOI: 10.1115/1.2930443 · doi:10.1115/1.2930443
[7] DOI: 10.1006/jsvi.1996.0226 · doi:10.1006/jsvi.1996.0226
[8] DOI: 10.1142/S0219691306001312 · Zbl 1141.76470 · doi:10.1142/S0219691306001312
[9] DOI: 10.1016/S0301-679X(02)00063-4 · doi:10.1016/S0301-679X(02)00063-4
[10] DOI: 10.1142/S0219691304000548 · Zbl 1124.93341 · doi:10.1142/S0219691304000548
[11] DOI: 10.1016/S0888-3270(03)00075-X · doi:10.1016/S0888-3270(03)00075-X
[12] DOI: 10.1142/S0219691307002002 · Zbl 1135.62076 · doi:10.1142/S0219691307002002
[13] DOI: 10.1115/1.1616947 · doi:10.1115/1.1616947
[14] Yang W. X., EURASIP J. Appl. Signal Process. 8 pp 1156–
[15] Qian S., Time-Frequency and Wavelet Transforms (2002)
[16] DOI: 10.1109/79.91217 · doi:10.1109/79.91217
[17] DOI: 10.1002/0471200611 · doi:10.1002/0471200611
[18] DOI: 10.1016/j.ymssp.2004.01.008 · doi:10.1016/j.ymssp.2004.01.008
[19] DOI: 10.1016/j.ymssp.2004.01.008 · doi:10.1016/j.ymssp.2004.01.008
[20] Teolis A., Computational Signal Processing with Wavelets (1998) · Zbl 0928.94002
[21] Abry P., Wavelet and Turbulence – Multi-Resolutions, Algorithms of Decomposition, Invariance of Scale and Signals of Pressure (1997)
[22] DOI: 10.1016/j.triboint.2008.06.013 · doi:10.1016/j.triboint.2008.06.013
[23] Harris T., Rolling Bearing Analysis (1991)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.