Biler, Piotr Large-time behaviour of periodic solutions to dissipative equations of Korteweg-de Vries-Burgers type. (English) Zbl 0561.35065 Bull. Pol. Acad. Sci., Math. 32, 401-405 (1984). The exponential decay of priodic solutions to one-dimensional equations describing the propagation of nonlinear waves is proved. The rate of decay is characterized by an eigenvalue of the operator of dissipation occuring in the equation. Cited in 19 Documents MSC: 35Q99 Partial differential equations of mathematical physics and other areas of application 35B40 Asymptotic behavior of solutions to PDEs 35B10 Periodic solutions to PDEs Keywords:dissipative equations of Koreteweg-de Vries-Burgers type; exponential decay; priodic solutions; propagation of nonlinear waves PDF BibTeX XML Cite \textit{P. Biler}, Bull. Pol. Acad. Sci., Math. 32, 401--405 (1984; Zbl 0561.35065) OpenURL