×

Two new confidence intervals for the coefficient of variation in a normal distribution. (English) Zbl 1473.62081

Summary: We introduce an approximately unbiased estimator for the population coefficient of variation, \(\tau \), in a normal distribution. The accuracy of this estimator is examined by several criteria. Using this estimator and its variance, two approximate confidence intervals for \(\tau \) are introduced. The performance of the new confidence intervals is compared to those obtained by current methods.

MSC:

62F10 Point estimation
62F25 Parametric tolerance and confidence regions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] DOI: 10.1016/S0378-3758(01)00121-5 · Zbl 1011.62026 · doi:10.1016/S0378-3758(01)00121-5
[2] DOI: 10.1016/0026-2714(95)00152-2 · doi:10.1016/0026-2714(95)00152-2
[3] DOI: 10.2307/2342042 · Zbl 0005.30301 · doi:10.2307/2342042
[4] Graham R. L., Answer to problem 9.60 in Concrete Mathematics: A Foundation for Computer Science, 2. ed. (1994)
[5] DOI: 10.1214/aoms/1177732503 · Zbl 0015.31002 · doi:10.1214/aoms/1177732503
[6] Iglewicz , B. 1967. ”Some properties of the coefficient of variation”. Virginia Polytechnic Institute. Ph.D. thesis
[7] DOI: 10.1080/00401706.1970.10488646 · doi:10.1080/00401706.1970.10488646
[8] Kang , K. and Schmeiser , B. W. 1986. ”Methods for evaluating and comparing confidence interval procedures”. FL: Department of Industrial Engineering, University of Miami. Tech. Rep · Zbl 0705.62012
[9] DOI: 10.3758/BF03192966 · doi:10.3758/BF03192966
[10] Kendall M. G., The Advanced Theory of Statistics 1 (1969)
[11] DOI: 10.1093/biomet/51.1-2.25 · Zbl 0124.09804 · doi:10.1093/biomet/51.1-2.25
[12] DOI: 10.1007/978-1-4757-2769-2 · doi:10.1007/978-1-4757-2769-2
[13] Lehmann E. L., Testing Statistical Hypotheses, 2. ed. (1996) · Zbl 0777.62027
[14] Mahmoudvand R., World Appl. Sci. J 2 (5) pp 519– (2007)
[15] Mckay A. T., J. B. Stat. Soc. 95 pp 696– (1932)
[16] DOI: 10.1080/03610929108830707 · doi:10.1080/03610929108830707
[17] Ng K. C., InterStat (2006)
[18] DOI: 10.2307/2342043 · Zbl 0005.30302 · doi:10.2307/2342043
[19] Rao K. A., Calcutta Stat. Assoc. Bull. 38 pp 225– (1989)
[20] DOI: 10.1109/24.370217 · doi:10.1109/24.370217
[21] DOI: 10.1002/sim.2330 · doi:10.1002/sim.2330
[22] DOI: 10.1080/03610918308812347 · doi:10.1080/03610918308812347
[23] DOI: 10.1080/00031305.1996.10473537 · doi:10.1080/00031305.1996.10473537
[24] Verrill , S. 2003. ”Confidence bounds for normal and log-normal distribution coefficient of variation”. Madison, Wisconsin, US Research Paper, EPL-RP-609
[25] DOI: 10.1016/S0378-3758(01)00241-5 · Zbl 1006.62020 · doi:10.1016/S0378-3758(01)00241-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.