zbMATH — the first resource for mathematics

What is a multi-modeling language? (English) Zbl 1253.68225
Corradini, Andrea (ed.) et al., Recent trends in algebraic development techniques. 19th international workshop, WADT 2008, Pisa, Italy, June 13–16, 2008. Revised selected papers. Berlin: Springer (ISBN 978-3-642-03428-2/pbk). Lecture Notes in Computer Science 5486, 71-87 (2009).
Summary: In large software projects often multiple modeling languages are used in order to cover the different domains and views of the application and the language skills of the developers appropriately. Such “multi-modeling” raises many methodological and semantical questions, ranging from semantic consistency of the models written in different sublanguages to the correctness of model transformations between the sublanguages. We provide a first formal basis for answering such questions by proposing semantically well-founded notions of a multi-modeling language and of semantic correctness for model transformations. In our approach, a multi-modeling language consists of a set of sublanguages and correct model transformations between some of the sublanguages. The abstract syntax of the sublanguages is given by MOF meta-models. The semantics of a multi-modeling language is given by associating an institution, i.e., an appropriate logic, to each of its sublanguages. The correctness of model transformations is defined by semantic connections between the institutions.
For the entire collection see [Zbl 1173.68005].

68Q65 Abstract data types; algebraic specification
68N30 Mathematical aspects of software engineering (specification, verification, metrics, requirements, etc.)
Maude; UML2Alloy; VIATRA2
Full Text: DOI
[1] The AGG website (1997), http://tfs.cs.tu-berlin.de/agg/
[2] Akehurst, D.H., Kent, S., Patrascoiu, O.: A Relational Approach to Defining and Implementing Transformations Between Metamodels. Softw. Sys. Model. 2(4), 215–239 (2003) · Zbl 02178277 · doi:10.1007/s10270-003-0032-z
[3] Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A Challenging Model Transformation. In: Engels, G., Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 436–450. Springer, Heidelberg (2007) · Zbl 05314784 · doi:10.1007/978-3-540-75209-7_30
[4] Bergstra, J.A., Tucker, J.V.: A Characterisation of Computable Data Types by Means of a Finite Equational Specification Method. In: Proc. ICALP 1980. LNCS, vol. 85, pp. 76–90. Springer, Heidelberg (1980) · Zbl 0449.68003 · doi:10.1007/3-540-10003-2_61
[5] Biermann, E., Ermel, C., Taentzer, G.: Precise Semantics of EMF Model Transformations by Graph Transformation. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 53–67. Springer, Heidelberg (2008) · Zbl 05376192 · doi:10.1007/978-3-540-87875-9_4
[6] Boronat, A., Heckel, R., Meseguer, J.: Rewriting Logic Semantics and Verification of Model Transformations. Technical Report CS-08-004, University of Leicester (2008)
[7] Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What is a Multi-Modeling Language? Technical Report UIUCDCS-R-2008-3006, UIUC (2008), http://www.cs.uiuc.edu/research/techreports.php?report=UIUCDCS-R-2008-3006 · Zbl 1253.68225
[8] Boronat, A., Meseguer, J.: Algebraic Semantics of OCL-constrained Metamodel Specifications. Technical Report UIUCDCS-R-2008-2995, University of Illinois, Urbana Champaign (2008)
[9] Boronat, A., Meseguer, J.: An Algebraic Semantics for MOF. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 377–391. Springer, Heidelberg (2008) · Zbl 05270517 · doi:10.1007/978-3-540-78743-3_28
[10] Broy, M., Cengarle, M.V., Rumpe, B.: Semantics of UML – Towards a System Model for UML: The Structural Data Model. Technical Report TUM-I0612, Technische Universität München (2006)
[11] Broy, M., Stølen, K.: Specification and Development of Interactive Systems: Focus on Streams, Interfaces, and Refinement. Springer, Heidelberg (2001) · Zbl 0981.68115 · doi:10.1007/978-1-4613-0091-5
[12] Cengarle, M.V., Knapp, A.: An Institution for UML 2.0 Static Structures. Technical Report TUM-I0807, Technische Universität München (2008)
[13] Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A Heterogeneous Approach to UML Semantics. In: WISTP 2008. LNCS, vol. 5019, pp. 383–402. Springer, Heidelberg (2008) · Zbl 1143.68373 · doi:10.1007/978-3-540-68679-8_23
[14] Clavel, M., Durán, F., Eker, S., Meseguer, J., Lincoln, P., Martí-Oliet, N., Talcott, C.: All About Maude. LNCS, vol. 4350. Springer, Heidelberg (2007) · Zbl 1115.68046
[15] Codd, E.F.: A Relational Model of Data for Large Shared Data Banks. Comm. ACM 13(6), 377–387 (1970) · Zbl 0207.18003 · doi:10.1145/362384.362685
[16] Diaconescu, R.: Institution-Independent Model Theory. Birkhäuser, Basel (2008) · Zbl 1144.03001
[17] Engels, G., Heckel, R., Taentzer, G., Ehrig, H.: A Combined Reference Model- and View-Based Approach to System Specification. Int. J. Softw. Knowl. Eng. 7(4), 457–477 (1997) · doi:10.1142/S0218194097000266
[18] Finkelstein, A., Goedicke, M., Kramer, J., Niskier, C.: Viewpoint Oriented Software Development: Methods and Viewpoints in Requirements Engineering. In: Bergstra, J.A., Feijs, L.M.G. (eds.) Algebraic Methods 1989. LNCS, vol. 490, pp. 29–54. Springer, Heidelberg (1991) · doi:10.1007/3-540-53912-3_17
[19] Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specification and Programming. J. ACM 39(1), 95–146 (1992) · Zbl 0799.68134 · doi:10.1145/147508.147524
[20] Goguen, J.A., Rosu, G.: Institution Morphisms. Form. Asp. Comp. 13(3–5), 274–307 (2002) · Zbl 1001.68019 · doi:10.1007/s001650200013
[21] MacLane, S.: Categories for the Working Mathematician. Springer, Heidelberg (1971) · Zbl 0705.18001
[22] Meseguer, J.: General Logics. In: Logic Coll. 1987, pp. 275–329. North Holland, Amsterdam (1989)
[23] Meseguer, J.: Membership Algebra as a Logical Framework for Equational Specification. In: Parisi-Presicce, F. (ed.) WADT 1997. LNCS, vol. 1376, pp. 18–61. Springer, Heidelberg (1998) · Zbl 0903.08009 · doi:10.1007/3-540-64299-4_26
[24] Mossakowski, T.: Heterogeneous Specification and the Heterogeneous Tool Set. Habilitationsschrift, Universität Bremen (2005)
[25] Mossakowski, T., Tarlecki, A.: Heterogeneous Specification (in preparation) · Zbl 1253.68231
[26] Mossakowski, T., Tarlecki, A.: Heterogeneous Logical Environments for Distributed Specifications. In: WADT 2008. LNCS, vol. 5486, pp. 266–289. Springer, Heidelberg (2009) · Zbl 1253.68231 · doi:10.1007/978-3-642-03429-9_18
[27] Object Management Group. MDA Guide Version 1.0.1. Technical report, OMG (2003) www.omg.org/docs/omg/03-06-01.pdf
[28] Object Management Group. MOF 2.0 Core Specification. Technical report, OMG (2006) www.omg.org/cgi-bin/doc?formal/2006-01-01
[29] Poernomo, I.: The Meta-Object Facility Typed. In: Proc. SAC 2006, pp. 1845–1849. ACM, New York (2006)
[30] Poernomo, I.: Proofs-as-Model-Transformations. In: Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 214–228. Springer, Heidelberg (2008) · Zbl 05297648 · doi:10.1007/978-3-540-69927-9_15
[31] Tarlecki, A.: Moving between Logical Systems. In: Proc. WADT 1995. LNCS, vol. 1130, pp. 478–502. Springer, Heidelberg (1996) · doi:10.1007/3-540-61629-2_59
[32] Varró, D., Balogh, A.: The Model Transformation Language of the VIATRA2 Framework. Sci. Comp. Prog. 68(3), 187–207 (2007) · Zbl 1131.68040 · doi:10.1016/j.scico.2007.05.004
[33] Wehrheim, H.: Behavioural Subtyping in Object-Oriented Specification Formalisms. Habilitationsschrift, Carl-von-Ossietzky-Universität Oldenburg (2002)
[34] Wirsing, M., Knapp, A.: View Consistency in Software Development. In: Wirsing, M., Knapp, A., Balsamo, S. (eds.) RISSEF 2002. LNCS, vol. 2941, pp. 341–357. Springer, Heidelberg (2004) · doi:10.1007/978-3-540-24626-8_24
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.