Bourn, Dominique La tour de fibrations exactes des n-catégories. (French) Zbl 0562.18007 Cah. Topol. Géom. Différ. 25, 327-351 (1984). The author studies some aspects of n-categories. First he produces a basic construction on a full subcategory V’ of a left exact category V, reflective by a left exact functor K. The construction produces a full subcategory \(Cat_ K(V)\) of the category Cat(V) of internal categories in V; the objects of \(Cat_ K(V)\) are those internal categories trivialized by K. It turns out that \(Cat_ K(V)\) is again a left exact category and V is a full subcategory of \(Cat_ K(V)\), reflective by a left exact functor \(K_ 1\). Thus the construction can be iterated. The object of the paper is to prove two results. First, the category of n-categories can be obtained by iterating n times the above construction, starting from \(1\to Sets\). Second, the functor K involved in the construction is actually a fibration; when it is an exact fibration, so is \(K_ 1\). As a consequence the author obtains, for every exact category E, a tower of exact fibrations: \[ \infty -Cat(E)...\to n- Cat(E)\to (n-1)-Cat(E)\to...\to Cat(E)\to E\to 1. \] The author promises to deduce from this, in a further paper, some Dold-Kan theorem for n- categorical abelian groups (equivalence between the category of abelian complexes of length n and the category of internal n-categories in Ab). Reviewer: F.Borceux Cited in 6 Documents MSC: 18G35 Chain complexes (category-theoretic aspects), dg categories 18D30 Fibered categories 18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010) 18E10 Abelian categories, Grothendieck categories Keywords:n-categories; internal categories; exact category; fibration; abelian complexes PDF BibTeX XML Cite \textit{D. Bourn}, Cah. Topologie Géom. Différ. Catégoriques 25, 327--351 (1984; Zbl 0562.18007) Full Text: Numdam EuDML OpenURL References: [1] 1 M. Barr , Exact categories , Lecture Notes in Math. 236 , Springer ( 1971 ), 1 - 120 . Zbl 0223.18010 · Zbl 0223.18010 [2] 2 D. Bourn , Méthode n-catégorique d’interprétation des complexes et des extensions abéliennes de longueur n , Rapport 45 Inst. Math. Pures et Appl. Univ. Cath. de Louvain , Juillet 1982 . [3] 3 D. Bourn & J. Penon , 2-catégories réductibles , U.E.R. Math. , Univ. Picardie , Amiens , Janvier 1978 . [4] 4 R. Brown , Some non-abelian methods in homotopy theory and homological algebra , Pure Math. Preprint 83 . 15 , Univ. of Wales , Bangor . · Zbl 0558.55001 [5] 5 R. Brown & P.J. Higgins , Colimit theorems for relative homotopy groups , J. Pure Appl. Algebra 22 ( 1981 ), 11 - 41 . MR 621285 | Zbl 0475.55009 · Zbl 0475.55009 [6] 6 R. Brown & P.J. Higgins , The equivalence of crossed complexes and \infty -groupoids , Cahiers Top. et Géom. Diff. XXII - 4 ( 1981 ), 370 - 386 . Numdam | Zbl 0487.55007 · Zbl 0487.55007 [7] 7 M. Bunge & R. Pare , Stacks and equivalence of indexed categories , Cahiers Top. et Géom. Diff. XX - 4 ( 1979 ), 373 - 399 . Numdam | MR 558105 | Zbl 0432.18003 · Zbl 0432.18003 [8] 8 A. & C. Ehresmann , Multiple functors , Cahiers Topo. et Géom. Diff. : II, XIX - 3 ( 1978 ), 295 - 333 ; III, XIX - 4 ( 1978 ), 387 - 443 ; IV , XX - 1 ( 1979 ), 59 - 104 . · Zbl 0415.18005 [9] 9 A. Grothendieck , Technique de descente et théorèmes d’existence en Géométrie Algébrique , Séminaire Bourbaki 1959 , Exposé 190 . Numdam | Zbl 0229.14007 · Zbl 0229.14007 [10] 10 R. Lavendhomme & J.R. Roisin , Cohomologie non abélienne de structures algébriques J. Algebra 67 ( 1980 ), 385 - 414 . MR 602071 | Zbl 0503.18013 · Zbl 0503.18013 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.