Elliptic partial differential equations of second order. 2nd ed. (English) Zbl 0562.35001

Grundlehren der Mathematischen Wissenschaften, 224. Berlin etc.: Springer-Verlag. XIII, 513 p. DM 128.00; $ 47.80 (1983).
In the second edition of this esteemed and useful exposition the authors made some minor revisions and added some material concerning recent developments of the theory. There are two additional chapters dealing with strong solutions of linear equations (L\({}^ p\) theory, maximum principles and local properties of strong solutions) and the classical Dirichlet problem for fully nonlinear equations (Maximum and comparison principles, continuation method, interior estimates for second derivatives), respectively. Other chapters are supplemented by sections concerning capacity, Hölder estimates for the first derivatives, extension and interpolation of Sobolev spaces, the eigenvalue problem.
Reviewer: H.Jeggle


35-02 Research exposition (monographs, survey articles) pertaining to partial differential equations
35J15 Second-order elliptic equations
35J60 Nonlinear elliptic equations
35B50 Maximum principles in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
35J65 Nonlinear boundary value problems for linear elliptic equations
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35B65 Smoothness and regularity of solutions to PDEs
35B45 A priori estimates in context of PDEs


Zbl 0361.35003