Combes, J. M.; Duclos, P.; Seiler, R. Krein’s formula and one-dimensional multiple-well. (English) Zbl 0562.47002 J. Funct. Anal. 52, 257-301 (1983). The article is the first of a series concerning two problems for one- dimensional Schrödinger operators and their classical limits (as Planck’s constant \(\hslash \to 0)\). The first is the behaviour of discrete eigenvalues in the classical limit for multiple-well potentials; the second is the so-called shape resonance problem. This paper is mainly concerned with the first problem. It is shown that all discrete eigenvalues possess asymptotic expansions in powers of \(\hslash\) when \(\hslash \to 0\), and a formula for the coefficients is given. The multiple-well problem is considered by using Dirichlet (Neumann) boundary conditions to separate the wells and then removing the boundary conditions by a finite rank perturbation (Krein’s formula). Also use is made of the exponential decay of eigenvectors. These methods are developed in this article. Reviewer: J.R.L.Webb Cited in 33 Documents MSC: 47A10 Spectrum, resolvent 35J10 Schrödinger operator, Schrödinger equation 81Q15 Perturbation theories for operators and differential equations in quantum theory Keywords:Dirichlet-Neumann boundary conditions; one-dimensional Schrödinger operators; Planck’s constant; behaviour of discrete eigenvalues in the classical limit for multiple-well potentials; shape resonance problem; finite rank perturbation; Krein’s formula; decay of eigenvectors × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Akhiezer, N. I.; Glazman, I. M., Theory of Linear Operators in Hilbert Space (1961), Ungar: Ungar New York · Zbl 0098.30702 [3] Coleman, S., The use of instantons, (Zichichi, A., Proceedings of the 1977 International School of Subnuclear Physics (1979), Plenum: Plenum New York), 805-916 [4] Combes, J. M., Asymptotic expansion for quantum mechanical bound state energies near the classical limit, (Proceedings of the Seminar on Spectral and Scattering Theory and Related Fields. Proceedings of the Seminar on Spectral and Scattering Theory and Related Fields, brochure of the R.I.M.S. (1975), Kyoto University), 23-38 [5] Combes, J. M.; Seiler, R., Regularity and asymptotic properties of the discrete spectrum of electronic Hamiltonians, Internat. J. Quantum Chem., 14, 213 (1978) [6] Combes, J. M.; Duclos, P.; Seiler, R., The Born Oppenheimer approximation, (Wightman; Velo, Rigorous Atomic and Molecular Physics Proceedings. Rigorous Atomic and Molecular Physics Proceedings, 1980 (1981), Plenum: Plenum New York), 185-212 [7] Duclos, P., Propriétés spectrales des hamiltoniens de Born et Oppenheimer, (Justification de l’approximation harmonique. Justification de l’approximation harmonique, Thèse de 3ème cycle (1974), Université d’Aix-Marseille II: Université d’Aix-Marseille II France) [9] Dunford, N.; Schwartz, J. T., Linear Operators, Part II (1963), Interscience: Interscience New York · Zbl 0128.34803 [10] Ginibre, J., Some applications of functional integration in statistical mechanics, (De Witt, C.; Stora, R., Les Mouches Summer School Proceedings (1971), Gordon & Breach: Gordon & Breach New York), 327-427 [11] Harrel, E. M., Double wells, Comm. Math. Phys., 75, 239-261 (1980) · Zbl 0445.35036 [13] Kato, T., Perturbation Theory for Linear Operators (1966), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0148.12601 [14] Nehari, Z., Conformal Mapping (1952), Mc Graw-Hill: Mc Graw-Hill New York · Zbl 0048.31503 [15] O’Connor, A., Exponential decay of bound state wave functions, Comm. Math. Phys., 34, 251-270 (1973) [16] Protter, M. H.; Weinberger, H. F., Maximum Principles in Differential Equations (1967), Prentice-Hall: Prentice-Hall Englewood Cliffs, n.g. · Zbl 0153.13602 [17] Reed, M.; Simon, B., T. IV. Analysis (1978), Academic Press: Academic Press New York [18] Simon, B., Pointwise bounds on eigenfunctions and wave packets in \(N\)-body quantum systems. III, Trans. Amer. Math. Soc., 208, 317-329 (1975) · Zbl 0305.35078 [19] Stenger, W.; Weinstein, A., Methods of Intermediate Problems for Eigenvalues (1972), Academic Press: Academic Press New York · Zbl 0291.49034 [20] Stone, M. H., Linear transformations in Hilbert space and their applications to analysis, (Amer. Math. Soc. Coll. Publ., Vol. 15 (1932)), Providence, R. I. · Zbl 0118.29903 [21] Combes, J. M.; Duclos, P.; Seiler, R., Krein’s formula and one-dimensional multiple-well, Preprint CPT-82/P.1365 (January 1982) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.