×

zbMATH — the first resource for mathematics

A filter trust region method for solving semi-infinite programming problems. (English) Zbl 1178.90330
Summary: This paper is concerned with numerical methods for solving a semi-infinite programming problem. We first reformulate the KKT system derived from the problem into a system of semismooth equations by using the F-B NCP function. Under some conditions, a solution of the system of semismooth equations is a solution of the problem. Then we develop a filter-trust-region method for solving this system of semismooth equations. An advantage of the proposed method is that at each iteration, only a system of linear equations is solved. We prove that under standard assumptions, the iterate sequence generated by this proposed method converges globally and superlinearly. Numerical tests are also reported.
Reviewer: Reviewer (Berlin)

MSC:
90C34 Semi-infinite programming
65K05 Numerical mathematical programming methods
90C30 Nonlinear programming
Software:
Filtrane
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Hettich, R., Kortanek, K.O.: Semi-infinite programming: Theory, methods and applications. SIAM Rev. 35(3), 380–429 (1993) · Zbl 0784.90090 · doi:10.1137/1035089
[2] Polak, E.: Optimization, Algorithms and Consistent Approximations. Springer, Berlin (1997) · Zbl 0899.90148
[3] Still, G.: Discretization in semi-infinite programming: the rate of convergence. Math. Programm. Ser. A 91, 53–69 (2001) · Zbl 1051.90023
[4] Guanglu, Z., Changyu, W., Yuzhong, Z.: An efficient method for semi-infinite programming. Math. Numer. Sinica 21(1), 1–8 (1999) · Zbl 0916.65060
[5] Liqun, Q., Soon-yi, W., Guanglu, Z.: Semismooth Newton methods for solving semiinfinite programming problems. J. Global Optim. 27, 215–232 (2003) · Zbl 1033.90137 · doi:10.1023/A:1024814401713
[6] Liping, P., Jie, S.: An U V-algorithm for semiinfinite multiobjective programming. J. Appl. Math. Comput. 21(1–2), 307–313 (2006) · Zbl 1105.90060 · doi:10.1007/BF02896408
[7] Fletcher, R., Leyffer, S.: Nonlinear programming without a penalty function. Math. Programm. 91, 239–269 (2002) · Zbl 1049.90088 · doi:10.1007/s101070100244
[8] Sainvitu, C., Toint, Ph.L.: A filter-trust-region method for simple-bound constrained optimization. Optim. Methods Softw. 22(5), 835–848 (2007) · Zbl 1169.90458 · doi:10.1080/10556780701322970
[9] Gould, N.I.M., Toint, Ph.L.: A Fortran 95 filtr-trust region package for solving nonlinear least-squares problems and nonlinear feasibility problems. ACM Trans. Math. Softw. 33(1), 379–410 (2007)
[10] Gould, N.I.M., Leyffer, S., Toint, Ph.L.: A multi-dimensional filter algorithm for nonlinear equations and nonlinear least-squares. SIAM J. Optim. 15(1), 17–38 (2004) · Zbl 1075.65075 · doi:10.1137/S1052623403422637
[11] Gould, N.I.M., Sainvitu, C., Toint, Ph.L.: A filter-trust-region method for unconstrained optimization. SIAM J. Optim. 16(2), 341–357 (2005) · Zbl 1122.90074 · doi:10.1137/040603851
[12] Yigui, O.: A superlinearly convergent ODE-type trust region algorithm for nonsmooth nonlinear equations. J. Appl. Math. Comput. 22(3), 371–380 (2006) · Zbl 1146.90072 · doi:10.1007/BF02832062
[13] Yigui, O., Dingpi, H.: A superlinearly convergent trust region algorithm for LC1 constrained optimization problems. Acta Math. Scientia 25(1), 67–80 (2005) · Zbl 1168.90613
[14] Yaxiang, Y., Wenyu, S.: Optimization Theory and Methods. Science Press, Beijing (1997) · Zbl 1129.90002
[15] Fischer, A.: Solution of monotone complementarity problems with locally Lipschitzian functions. Math. Programm. 76, 513–532 (1997) · Zbl 0871.90097
[16] Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley Interscience, New York (1983) · Zbl 0582.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.