zbMATH — the first resource for mathematics

Computing Gröbner bases within linear algebra. (English) Zbl 1260.68485
Gerdt, Vladimir P. (ed.) et al., Computer algebra in scientific computing. 11th international workshop, CASC 2009, Kobe, Japan, September 13–17, 2009. Proceedings. Berlin: Springer (ISBN 978-3-642-04102-0/pbk). Lecture Notes in Computer Science 5743, 310-321 (2009).
Summary: In this paper, we present an alternative algorithm to compute Gröbner bases, which is based on computations on sparse linear algebra. Both S-polynomial computations and monomial reductions are computed in linear algebra simultaneously in this algorithm. So it can be implemented to any computational system which can handle linear algebra. For a given ideal in a polynomial ring, it calculates a Gröbner basis along with the corresponding term order appropriately.
For the entire collection see [Zbl 1175.68009].

68W30 Symbolic computation and algebraic computation
13P10 Gröbner bases; other bases for ideals and modules (e.g., Janet and border bases)
Full Text: DOI
[1] Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3-4), 235–265 (1997) · Zbl 0898.68039 · doi:10.1006/jsco.1996.0125
[2] Brickenstein, M.: Slimgb: Gröbner bases with slim polynomials. Reports on Computer Algebra 35, ZCA, University of Kaiserslautern (2005) · Zbl 1200.13044
[3] Buchberger, B.: Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Geichungssystems. Aequ. Math. 4(3), 374–383 (1970) · Zbl 0212.06401 · doi:10.1007/BF01844169
[4] Caboara, M.: A dynamic algorithm for Gröbner basis computation. In: Proc. ISSAC 1993, pp. 275–283 (1993) · Zbl 0922.13021 · doi:10.1145/164081.164141
[5] Collart, S., Kalkbrenner, M., Mall, D.: Converting Bases with the Gröbner Walk. J. Symb. Comput. 24(3–4), 465–469 (1997) · Zbl 0908.13020 · doi:10.1006/jsco.1996.0145
[6] Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F 4). J. Pure and Applied Algebra 139(1–3), 61–88 (1999) · Zbl 0930.68174 · doi:10.1016/S0022-4049(99)00005-5
[7] Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (F 5). In: Proc. ISSAC 2002, pp. 75–83 (2002) · Zbl 1072.68664
[8] Faugére, J.C., Gianni, P.M., Lazard, D., Mora, T.: Efficient Computation of Zero Dimensional Gröbner Bases by Change of Ordering. J. Symb. Comput. 16(4), 329–344 (1993) · Zbl 0805.13007 · doi:10.1006/jsco.1993.1051
[9] Gebauer, R., Möller, H.M.: On an installation of Buchberger’s algorithm. J. Symb. Comput. 6(2-3), 275–286 (1988) · Zbl 0675.13013 · doi:10.1016/S0747-7171(88)80048-8
[10] Giovini, A., Mora, T., Nielsi, G., Robbiano, L., Traverso, C.: One sugar cube, pleaseh OR Selection strategies in the Buchberger algorithm. In: Proc. ISSAC 1991, pp. 49–54 (1991) · Zbl 0933.68161
[11] Greuel, G.M., Pfister, G.: SINGULAR and Applications. Jahresbericht der DMV 108, 167–196 (2006) · Zbl 1112.13029
[12] Lazard, D.: Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983. LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983) · Zbl 0539.13002 · doi:10.1007/3-540-12868-9_99
[13] Mora, T., Robbiano, L.: The Gröbner fan of an ideal. J. Symb. Comput. 6(2-3), 183–208 (1988) · Zbl 0668.13017 · doi:10.1016/S0747-7171(88)80042-7
[14] Noro, M., Takeshima, T.: Risa/Asir – A Computer Algebra System. In: Proc. ISSAC 1992, pp. 387–396 (1992) · doi:10.1145/143242.143362
[15] Traverso, C.: Gröbner trace algorithms. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 125–138. Springer, Heidelberg (1989) · doi:10.1007/3-540-51084-2_12
[16] Traverso, C.: Hilbert functions and the Buchbeger algorithm. J. Symb. Comput. 22(4), 355–376 (1996) · Zbl 0922.13019 · doi:10.1006/jsco.1996.0056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.