zbMATH — the first resource for mathematics

Dissipation rates and partition of energy in thermoelasticity. (English) Zbl 0563.73007
Partition of energy in the framework of the linear isotropic elasticity is examined; the equations of evolution consist of the three hyperbolic equations of motion (linear momentum) coupled with a parabolic equation of energy conservation. It is found that the rate of decay of energy is affected by the symmetry of the initial data measured by the orders of the lowest nonvanishing moments of the initial displacements, initial velocity, and initial temperature distribution. It is found among others that: (1) the strain energy is asymptotically equal to a convex combination of the kinetic and thermal energy; (2) in the asymptotic limit, and with no coupling, the results reduce to the known equipartition energy in elasticity; (3) total energy decays algebraically with the rate increasing with increasing symmetry of the initial data.
Reviewer: J.L.Nowinski

74F05 Thermal effects in solid mechanics
35G10 Initial value problems for linear higher-order PDEs
35K25 Higher-order parabolic equations
74B99 Elastic materials
74A15 Thermodynamics in solid mechanics
35L05 Wave equation
Full Text: DOI
[1] G. S. S. Avila & D. G. Costa, ”Asymptotic properties of general symmetric hyperbolic systems”, Cont. Dev. in Cont. Mech. and Part. Diff. Equat. 25–36, North-Holland (1978). · Zbl 0402.35064
[2] C. Bardos & D. G. Costa, ”Decay along nonbicharacteristic rays of solutions of first order hyperbolic systems”, J. Math. Pures et Appl. 53, 427–435 (1974). · Zbl 0305.35068
[3] T. P. Branson, ”Eventual partition of conserved quantities in wave motion”, J. M. A. A. (to appear). · Zbl 0591.35036
[4] T. P. Branson, ”Eventual partition of conserved quantities for Maxwell’s equations”, Arch. Rational Mech. Anal. (to appear). · Zbl 0559.35072
[5] D. G. Costa, ”On partition of energy for uniformly propagative systems”, J. M. A. A. 58, 56–62 (1977). · Zbl 0354.35061
[6] D. G. Costa & W. A. Strauss, ”Energy Splitting”, Quart. Appl. Math. 39, 351–361 (1981). · Zbl 0478.35062 · doi:10.1090/qam/636240
[7] C. M. Dafermos, ”On the existence and the asymptotic stability of solutions to the equations of linear thermoelasticity”, Arch. Rational Mech. Anal. 29, 241–271 (1968). · Zbl 0183.37701 · doi:10.1007/BF00276727
[8] G. Dassios, ”Equipartition of energy for Maxwell’s equations”, Quart. Appl. Math. 37, 465–469 (1980). · Zbl 0425.35082 · doi:10.1090/qam/564738
[9] G. Dassios, ”Equipartition of energy in elastic wave propagation”, Mech. Res. Comm. 6, 45–50 (1979). · Zbl 0416.73022 · doi:10.1016/0093-6413(79)90078-8
[10] G. Dassios & E. Galanis, ”Asymptotic equipartition of kinetic and strain energy for elastic waves in anisotropic media”, Quart. Appl. Math. 38, 121–128 (1980). · Zbl 0436.73014 · doi:10.1090/qam/575835
[11] G. Dassios & M. Grillakis, ”Equipartition of energy for anisotropic elastic waves”, J. Diff. Equal. 51, 408–418 (1984). · Zbl 0487.73032 · doi:10.1016/0022-0396(84)90095-0
[12] G. Dassios, ”Energy Theorems for magnetoelastic waves in a perfectly conducting medium”, Quart. Appl. Math. 39, 479–490 (1982). · Zbl 0507.73091 · doi:10.1090/qam/644102
[13] G. Dassios & M. Grillakis, ”Equipartition of energy in scattering theory”, SIAM J. Math. Annal. 14, 915–924 (1983). · Zbl 0525.35068 · doi:10.1137/0514071
[14] R. J. Duffin, ”Equipartition of energy in wave motion”, J. M. A. A. 32, 386–391 (1970). · Zbl 0223.35055
[15] J. A. Goldstein, ”An asymptotic property of solutions of wave equations”, Proc. Amer. Math. Soc. 23, 359–363 (1969). · Zbl 0185.34103 · doi:10.1090/S0002-9939-1969-0250125-1
[16] J. A. Goldstein, ”An asymptotic property of solutions of wave equations II”, J. M. A. A. 32, 392–399 (1970). · Zbl 0216.41803
[17] J. A. Goldstein & J. T. Sandefur, Jr., ”Abstract equipartition of energy theorems”, J. M. A. A. 67, 58–74 (1979). · Zbl 0403.47011
[18] J. A. Goldstein & S. I. Rosencrans, ”Energy decay and partition for dissipative wave equations”, J. Diff. Equal. 36, 66–73 (1980). · Zbl 0403.35096 · doi:10.1016/0022-0396(80)90076-5
[19] J. A. Goldstein & J. T. Sandefur, Jr., ”Asymptotic equipartition of energy for differential equations in Hilbert space”, Trans. Amer. Math. Soc. 219, 397–406 (1979). · Zbl 0302.34080 · doi:10.1090/S0002-9947-1976-0410016-8
[20] J. A. Goldstein & J. T. Sandefur, Jr., ”Equipartition on energy for higher-order hyperbolic equations”, Proc. Nat. Acad. Sci. U.S.A. 78, 698 (1981). · Zbl 0455.35084 · doi:10.1073/pnas.78.2.698
[21] F. P. Greenleaf, ”Introduction to Complex Variables”, Saunders Company (1972). · Zbl 0241.30001
[22] F. John, ”Partial Differential Equations”, third edition, Springer-Verlag (1978). · Zbl 0426.35002
[23] P. D. Lax & R. S. Phillips, ”Scattering Theory”, Academic Press (1967).
[24] H. A. Levine, ”An equipartition of energy theorem for weak solutions of evolutionary equations in Hilbert spce: The Lagrange identity method”, J. Diff. Equat. 24, 197–210 (1977). · Zbl 0398.34056 · doi:10.1016/0022-0396(77)90144-9
[25] W. Nowacki, ”Dynamic problems of thermoelasticity”, Noordhoff (1975). · Zbl 0364.73001
[26] W. Rudin, ”Functional Analysis”, McGraw-Hill (1973). · Zbl 0253.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.