×

zbMATH — the first resource for mathematics

Mixing and spectral multiplicity. (English) Zbl 0565.28013
A mixing transformation is constructed which has non-simple spectrum of finite multiplicity. This example is based on a rank 1 mixing transformation and is constructed by cutting and stacking. It can be made to be mixing of all orders.

MSC:
28D05 Measure-preserving transformations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/BFb0060642 · doi:10.1007/BFb0060642
[2] Friedman, Introduction to Ergodic Theory (1970)
[3] DOI: 10.2307/2036306 · Zbl 0206.06404 · doi:10.2307/2036306
[4] Rudolph, J. D’Analyse Math. 35 pp 97– (1979)
[5] Rudolph, J. D’Analyse Math. 34 pp 36– (1978)
[6] DOI: 10.1007/BF01389325 · Zbl 0519.28008 · doi:10.1007/BF01389325
[7] DOI: 10.2307/2373350 · Zbl 0183.51503 · doi:10.2307/2373350
[8] Oseledec, Dokl Akad. Nauk SSSR 168 pp 776– (1966)
[9] Ornstein, Proceedings of the Sixth Berkeley Symposium on Statistics and Probability II pp 1– (1967)
[10] DOI: 10.1112/blms/16.4.402 · Zbl 0515.28010 · doi:10.1112/blms/16.4.402
[11] Kalikow, Ergod. Th. & Dynam. Sys. 4 pp 237– (1984)
[12] del Junco, Can J. Math. 29 pp 655– (1977) · Zbl 0335.28010 · doi:10.4153/CJM-1977-067-7
[13] Katok, Progress in Mathematics
[14] Jones, Comp. Math 25 pp 135– (1972)
[15] Chacon, Pacific J. Math 2 pp 293– (1969) · Zbl 0183.31902 · doi:10.2140/pjm.1969.31.293
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.