zbMATH — the first resource for mathematics

Combining nonmonotonic knowledge bases with external sources. (English) Zbl 1193.68242
Ghilardi, Silvio (ed.) et al., Frontiers of combining systems. 7th international symposium, FroCoS 2009, Trento, Italy, September 16–18, 2009. Proceedings. Berlin: Springer (ISBN 978-3-642-04221-8/pbk). Lecture Notes in Computer Science 5749. Lecture Notes in Artificial Intelligence, 18-42 (2009).
Summary: The developments in information technology during the last decade have been rapidly changing the possibilities for data and knowledge access. To respect this, several declarative knowledge representation formalisms have been extended with the capability to access data and knowledge sources that are external to a knowledge base. This article reviews some of these formalisms that are centered around Answer Set Programming, viz. HEX-programs, modular logic programs, and multi-context systems, which were developed by the KBS group of the Vienna University of Technology in cooperation with external colleagues. These formalisms were designed with different principles and four different settings, and thus have different properties and features; however, as argued, they are not unrelated. Furthermore, they provide a basis for advanced knowledge-based information systems, which are targeted in ongoing research projects.
For the entire collection see [Zbl 1178.68010].

68T30 Knowledge representation
68N17 Logic programming
68T27 Logic in artificial intelligence
Full Text: DOI
[1] Analyti, A., Antoniou, G., Damásio, C.V.: A principled framework for modular web rule bases and its semantics. In: Proc. 11th Int’l. Conf. Principles of Knowledge Representation and Reasoning (KR 2008), pp. 390–400. AAAI Press, Menlo Park (2008)
[2] Brewka, G., Eiter, T.: Equilibria in Heterogeneous Nonmonotonic Multi-Context Systems. In: AAAI 2007, pp. 385–390. AAAI Press, Menlo Park (2007)
[3] Brewka, G., Eiter, T.: Argumentation context systems: A framework for abstract group argumentation. In: LPNMR 2009. LNCS. Springer, Heidelberg (2009) · Zbl 1258.68154
[4] Brewka, G., Roelofsen, F., Serafini, L.: Contextual Default Reasoning. In: IJCAI 2007, pp. 268–273 (2007)
[5] Calimeri, F., Cozza, S., Ianni, G.: External sources of knowledge and value invention in logic programming. Ann. Math. Artif. Intell. 50(3-4), 333–361 (2007) · Zbl 1125.68026 · doi:10.1007/s10472-007-9076-z
[6] Calimeri, F., Ianni, G.: External sources of computation for answer set solvers. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 105–118. Springer, Heidelberg (2005) · Zbl 1152.68400 · doi:10.1007/11546207_9
[7] Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Modular Nonmonotonic Logic Programming Revisited. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 145–159. Springer, Heidelberg (2009) · Zbl 1251.68056 · doi:10.1007/978-3-642-02846-5_16
[8] Dao-Tran, M., Eiter, T., Fink, M., Krennwallner, T.: Relevance-driven evaluation of modular nonmonotonic logic programs. In: LPNMR 2009. LNCS. Springer, Heidelberg (to appear, 2009) · Zbl 1258.68028
[9] de la Banda, M.G., Pontelli, E. (eds.): Logic Programming (ICLP 2008). LNCS, vol. 5366. Springer, Heidelberg (2008) · Zbl 1154.68013
[10] Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Małuszyński, J.: Hybrid reasoning with rules and ontologies. In: Bry, F., Małuszyński, J. (eds.) Semantic Techniques for the Web: The REWERSE perspective. LNCS, vol. 5500, p. 50. Springer, Heidelberg (2009) · Zbl 05610060 · doi:10.1007/978-3-642-04581-3_1
[11] Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–358 (1995) · Zbl 1013.68556 · doi:10.1016/0004-3702(94)00041-X
[12] Eiter, T., Fink, M., Krennwallner, T.: Decomposition of Declarative Knowledge Bases with External Functions. In: IJCAI 2009. AAAI Press, Menlo Park (2009)
[13] Eiter, T., Gottlob, G., Veith, H.: Modular Logic Programming and Generalized Quantifiers. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS, vol. 1265, pp. 290–309. Springer, Heidelberg (1997)
[14] Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and Ontologies for the Semantic Web. In: Baroglio, C., Bonatti, P.A., Małuszyński, J., Marchiori, M., Polleres, A., Schaffert, S. (eds.) Reasoning Web 2008. LNCS, vol. 5224, pp. 1–53. Springer, Heidelberg (2008) · Zbl 05365612 · doi:10.1007/978-3-540-85658-0_1
[15] Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Answer set programming: A primer. In: Tessaris, S., Franconi, E., Eiter, T., Gutierrez, C., Handschuh, S., Rousset, M.-C., Schmidt, R.A. (eds.) Reasoning Web 2009. LNCS, vol. 5689, pp. 40–110. Springer, Heidelberg (2009) · Zbl 1254.68248 · doi:10.1007/978-3-642-03754-2_2
[16] Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. Artif. Intell. 172(12-13), 1495–1539 (2008) · Zbl 1183.68595 · doi:10.1016/j.artint.2008.04.002
[17] Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A Uniform Integration of Higher-Order Reasoning and External Evaluations in Answer Set Programming. In: IJCAI 2005, pp. 90–96. Professional Book Center (2005)
[18] Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: Effective Integration of Declarative Rules with external Evaluations for Semantic Web Reasoning. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 273–287. Springer, Heidelberg (2006) · doi:10.1007/11762256_22
[19] Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set Programming with Description Logics for the Semantic Web. In: KR 2004, pp. 141–151. Morgan Kaufmann, San Francisco (2004) · Zbl 1183.68595
[20] Eiter, T., Subrahmanian, V., Pick, G.: Heterogeneous Active Agents, I: Semantics. Artificial Intelligence 108(1-2), 179–255 (1999) · Zbl 0914.68123 · doi:10.1016/S0004-3702(99)00005-3
[21] Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Semantics and complexity. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 200–212. Springer, Heidelberg (2004) · Zbl 1111.68380 · doi:10.1007/978-3-540-30227-8_19
[22] Gelfond, M.: Answer sets. In: van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation, Foundations of Artificial Intelligence, ch. 7, pp. 285–316. Elsevier, Amsterdam (2007)
[23] Gelfond, M., Lifschitz, V.: The Stable Model Semantics for Logic Programming. In: ICLP 1988, pp. 1070–1080. MIT Press, Cambridge (1988)
[24] Gelfond, M., Lifschitz, V.: Classical negation in logic programs and deductive databases. New Generation Computing 9, 365–385 (1991) · Zbl 0735.68012 · doi:10.1007/BF03037169
[25] Giunchiglia, F.: Contextual reasoning. Epistemologia XVI, 345–364 (1993)
[26] Giunchiglia, F., Serafini, L.: Multilanguage hierarchical logics, or: How we can do without modal logics. Artificial Intelligence 65(1), 29–70 (1994) · Zbl 0787.68093 · doi:10.1016/0004-3702(94)90037-X
[27] Heymans, S., Toma, I.: Ranking services using fuzzy hex-programs. In: Calvanese, D., Lausen, G. (eds.) RR 2008. LNCS, vol. 5341, pp. 181–196. Springer, Heidelberg (2008) · Zbl 05368216 · doi:10.1007/978-3-540-88737-9_14
[28] Hoehndorf, R., Loebe, F., Kelso, J., Herre, H.: Representing default knowledge in biomedical ontologies: Application to the integration of anatomy and phenotype ontologies. BMC Bioinformatics 8(1), 377 (2007) · Zbl 05326218 · doi:10.1186/1471-2105-8-377
[29] Lifschitz, V.: Twelve definitions of a stable model. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 37–51. Springer, Heidelberg (2008) · Zbl 1185.68166 · doi:10.1007/978-3-540-89982-2_8
[30] Lifschitz, V., Turner, H.: Splitting a Logic Program. In: ICLP 1994, pp. 23–37. MIT Press, Cambridge (1994)
[31] Marek, V., Truszczyński, M.: Nonmonotonic Logics – Context-Dependent Reasoning. Springer, Heidelberg (1993) · Zbl 0784.03018
[32] McCarthy, J.: Generality in artificial intelligence. Commun. ACM 30(12), 1029–1035 (1987) · Zbl 0644.68004 · doi:10.1145/33447.33448
[33] Nieuwenborgh, D.V., Cock, M.D., Vermeir, D.: Computing Fuzzy Answer Sets Using dlvhex. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 449–450. Springer, Heidelberg (2007) · Zbl 05523640 · doi:10.1007/978-3-540-74610-2_40
[34] Nieuwenborgh, D.V., Eiter, T., Vermeir, D.: Conditional Planning with External Functions. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 214–227. Springer, Heidelberg (2007) · Zbl 1149.68425 · doi:10.1007/978-3-540-72200-7_19
[35] Polleres, A., Feier, C., Harth, A.: Rules with Contextually Scoped Negation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 332–347. Springer, Heidelberg (2006) · doi:10.1007/11762256_26
[36] Roelofsen, F., Serafini, L.: Minimal and absent information in contexts. In: Proc. IJCAI 2005 (2005) · Zbl 1081.68694
[37] Ross, K.A.: Modular stratification and magic sets for datalog programs with negation. J. ACM 41(6), 1216–1266 (1994) · Zbl 0830.68028 · doi:10.1145/195613.195646
[38] Schindlauer, R.: Answer-Set Programming for the Semantic Web. PhD thesis, Vienna University of Technology, Austria (December 2006)
[39] Subrahmanian, V., Bonatti, P., Dix, J., Eiter, T., Kraus, S., Ozcan, F., Ross, R.: Heterogeneous Agent Systems: Theory and Implementation. MIT Press, Cambridge (2000)
[40] Väänänen, J.: Generalized quantifiers, an introduction. In: Väänänen, J. (ed.) ESSLLI 1997. LNCS, vol. 1754, pp. 1–17. Springer, Heidelberg (2000) · Zbl 0964.03038 · doi:10.1007/3-540-46583-9_1
[41] Wang, K., Billington, D., Blee, J., Antoniou, G.: Combining description logic and defeasible logic for the Semantic Web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 170–181. Springer, Heidelberg (2004) · doi:10.1007/978-3-540-30504-0_13
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.