zbMATH — the first resource for mathematics

Simulation of shallow-water systems using graphics processing units. (English) Zbl 1423.76302
Summary: This paper addresses the speedup of the numerical solution of shallow-water systems in 2D domains by using modern graphics processing units (GPUs). A first order well-balanced finite volume numerical scheme for 2D shallow-water systems is considered. The potential data parallelism of this method is identified and the scheme is efficiently implemented on GPUs for one-layer shallow-water systems. Numerical experiments performed on several GPUs show the high efficiency of the GPU solver in comparison with a highly optimized implementation of a CPU solver.

76M12 Finite volume methods applied to problems in fluid mechanics
35Q35 PDEs in connection with fluid mechanics
65Y10 Numerical algorithms for specific classes of architectures
Cg; CUDA; OpenGL
Full Text: DOI
[1] Brufau, P.; Vázquez, M.E.; García, P., A numerical model for the flooding and drying of irregular domains, Int. J. numer. methods fluids, 39, 247-275, (2002) · Zbl 1094.76538
[2] Castro, M.J.; Chacón, T.; Fernández, E.D.; González, J.M.; Parés, C., Well-balanced finite volume schemes for 2D non-homogeneous hyperbolic systems, application to the dam-break of aznalcóllar, Comput. methods appl. mech. eng., 197, 3932-3950, (2008) · Zbl 1194.76150
[3] Castro, M.J.; Fernández-Nieto, E.D.; Ferreiro, A.; García-Rodríguez, M.; Parés, J.A.C., High order extensions of roe schemes for two dimensional nonconservative hyperbolic systems, J. sci. comput., 39, 67-114, (2009) · Zbl 1203.65131
[4] Castro, M.J.; Ferreiro, J.; García, A.J.; González, A.J.; Macías, M.; Parés, J.C.; Vázquez-Cendón, M.E., On the numerical treatment of wet/dry fronts in shallow flows: application to one-layer and two-layers systems, Math. comp. model., 42, 419-439, (2005) · Zbl 1121.76008
[5] Castro, M.J.; García-Rodríguez, J.A.; González-Vida, J.M.; Parés, C., A parallel 2d finite volume scheme for solving systems of balance laws with nonconservative products: application to shallow flows, Comput. methods appl. mech. eng., 195, 2788-2815, (2006) · Zbl 1388.76169
[6] Castro, M.J.; García-Rodríguez, J.A.; González-Vida, J.M.; Parés, C., Solving shallow-water systems in 2D domains using finite volume methods and multimedia SSE instructions, J. comput. appl. math., 221, 16-32, (2008) · Zbl 1211.76074
[7] Castro, M.J.; González, J.J.; Parés, M.C., Numerical treatment of wet/dry fronts in shallow flows with a modified roe scheme, Math. model. methods appl. sci., 16, 897-931, (2006) · Zbl 1136.65330
[8] Fernando, R.; Kilgard, M.J., The cg tutorial: the definitive guide to programmable real-time graphics, (2003), Addison-Wesley
[9] Gallardo, J.M.; Parés, C.; Castro, M.J., On a well-balanced high-order finite volume scheme for shallow water equations with topography and dry areas, J. comput. phys., 227, 574-601, (2007) · Zbl 1126.76036
[10] Galloüet, T.; Hérard, J.M.; Seguin, N., Some approximate Godunov schemes to compute shallow-water equations with topography, Comput. fluids, 32, 479-513, (2003) · Zbl 1084.76540
[11] Hagen, T.R.; Hjelmervik, J.M.; Lie, K.-A.; Natvig, J.R.; Ofstad Henriksen, M., Visual simulation of shallow-water waves, Simulat. model. pract. theory, 13, 716-726, (2005)
[12] Harten, A.; Hyman, J.M., Self-adjusting grid methods for one-dimensional hyperbolic conservation laws, J. comp. phys., 50, 235-269, (1983) · Zbl 0565.65049
[13] http://www.nvidia.com.
[14] Kumar, V.; Grama, A.; Gupta, A.; Karypis, G., Introduction to parallel computing, (2003), Benjamin/Cummings
[15] nVIDIA, Nvidia CUDA component unified device architecture. programming guide version 1.1, (2007), Technical report nVIDIA Corporation
[16] OpenGL Architecture Review Board, D.; Shreiner, M.; Woo, J.; Neider, T.; Davis, Opengl programming guide: the official guide to learning opengl, version 2.1, (2007), Addison-Wesley Professional
[17] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E. Lefohn, T. Purcell, A Survey of General-Purpose Computation on Graphics Hardware, Eurographics 2005 State of the Art Report, 2005.
[18] Parés, C., Numerical methods for nonconservative hyperbolic systems. A theoretical framewok, SIAM J. num. anal., 44, 1, 300-321, (2006) · Zbl 1130.65089
[19] Parés, C.; Castro, M.J., On the well-balance property of roe’s method for non conservative hiperbolic systems. applicatons to shallow-water systems, Esaim:m2an, 38, 5, 821-852, (2004) · Zbl 1130.76325
[20] Rumpf, M.; Strzodka, R., Graphics processor units: new prospects for parallel computing, L.N., Comput. sci. eng., 51, 89-121, (2006) · Zbl 1112.68343
[21] Toro, E.F., Shock-capturing methods for free-surface shallow flows, (2001), Wiley · Zbl 0996.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.