zbMATH — the first resource for mathematics

Sur l’anneau de Chow d’une variété abélienne. (French) Zbl 0566.14003
Let A be an abelian variety and CH(A) its Chow ring. In the \({\mathbb{Q}}\)-vector space \(CH(A)\otimes_{{\mathbb{Z}}}{\mathbb{Q}}\), the operators \(k^*\) (for \(k\in {\mathbb{Z}})\) can be simultaneously diagonalized. We describe geometrically some of the eigenspaces, and give an application to the study of algebraic cycles on an abelian threefold.

14C05 Parametrization (Chow and Hilbert schemes)
14K05 Algebraic theory of abelian varieties
14C99 Cycles and subschemes
Full Text: DOI EuDML
[1] Beauville, A.: Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne. Algebraic geometry (Tokyo/Kyoto 1982), Lect. Notes Math. 1016, 238-260. Berlin, Heidelberg, New York: Springer 1983
[2] Bloch, S.: Some elementary theorems about algebraic cycles on abelian varieties. Invent. Math.37, 215-228 (1976) · Zbl 0371.14007 · doi:10.1007/BF01390320
[3] Bloch, S., Srinivas, V.: Remarks on correspondences and algebraic cycles. Am. J. Math.105, 1235-1253 (1983) · Zbl 0525.14003 · doi:10.2307/2374341
[4] Ceresa, G.:C is not algebraically equivalent toC ? in its Jacobian. Ann. Math.117, 285-291 (1983) · Zbl 0538.14024 · doi:10.2307/2007078
[5] Murre, J.-P.: Un résultat en théorie des cycles algébriques de codimension deux. C. R. Acad. Sci. Paris, sér. I,296, 981-984 (1983) · Zbl 0532.14002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.