Maz’ya, V. G.; Nazarov, S. A.; Plamenevskij, B. A. Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes. (English. Russian original) Zbl 0566.35031 Math. USSR, Izv. 24, 321-345 (1985); translation from Izv. Akad. Nauk SSSR, Ser. Mat. 48, No. 2, 347-371 (1984). Let \(\Omega\) be a domain in \(R^ 2\) or in \(R^ 3\), \(\Omega_{\epsilon}=\Omega \setminus \{\omega \epsilon \},\) where \(\epsilon >0\) is a small parameter. The authors consider the eigenvalue problem \(\Delta u=\lambda u,\) \(x\in \Omega_{\epsilon}\), \(\partial u/\partial n|_{\partial \Omega}=0\), \(u|_{\omega \epsilon}=0.\) The authors determine the asymptotic behavior of the first eigenvalues when \(\epsilon \to +0\). Reviewer: M.V.Fedoryuk Cited in 48 Documents MSC: 35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation 35P15 Estimates of eigenvalues in context of PDEs Keywords:small parameter; asymptotic behavior; first eigenvalues PDFBibTeX XMLCite \textit{V. G. Maz'ya} et al., Math. USSR, Izv. 24, 321--345 (1985; Zbl 0566.35031); translation from Izv. Akad. Nauk SSSR, Ser. Mat. 48, No. 2, 347--371 (1984) Full Text: DOI