zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On parameter transformations and interval estimation. (English) Zbl 0566.62022
Parameterizations which reduce the asymptotic bias and skewness of various pivotal quantities arising in large-sample theory are discussed for models depending on an unknown scalar parameter. Transformation formulae by which such parameterizations can be obtained are derived, and these formulae extend those for one-dimensional curved exponential families given by {\it P. Hougaard}, J. R. Stat. Soc., Ser. B 44, 244-252 (1982; Zbl 0494.62032). To assess the accuracy of normal approximations to the distributions of the pivots, their second-order properties are considered and comparisons with the signed square root of the likelihood-ratio statistic are drawn.

62F12Asymptotic properties of parametric estimators
62E20Asymptotic distribution theory in statistics
Full Text: DOI