Noldus, E. Stabilization of a class of distributional convolution equations. (English) Zbl 0566.93048 Int. J. Control 41, 947-960 (1985). The paper deals with the stabilization of the system \[ (1)\quad \dot x(t)=A_ 0x(t)+A_ 1x(t-h)+\int^{h}_{0}A(s)x(t-s)ds+B_ 0u(t) \] by using the linear state feedback \(u(t)=-Kx(t)\). It is shown, in particular, that if \((A_ 0,B_ 0)\) is controllable then the system (1) is stabilizable if \(\| A_ 1\|\) and \(\| A(s)\|\), \(0\leq s\leq h\), are sufficiently small. An illustrative example is also given. Reviewer: V.Marchenko Cited in 25 Documents MSC: 93D15 Stabilization of systems by feedback 34K35 Control problems for functional-differential equations 93C05 Linear systems in control theory 93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory 46F10 Operations with distributions and generalized functions 42A85 Convolution, factorization for one variable harmonic analysis 34K20 Stability theory of functional-differential equations Keywords:functional-differential systems; linear state feedback PDF BibTeX XML Cite \textit{E. Noldus}, Int. J. Control 41, 947--960 (1985; Zbl 0566.93048) Full Text: DOI References: [1] ARTSTEIN Z., I.E.E.E. Trans. autom. Control 27 pp 869– (1982) · Zbl 0486.93011 · doi:10.1109/TAC.1982.1103023 [2] DERESE I., Int. J. Control 31 pp 219– (1980) · Zbl 0439.93043 · doi:10.1080/00207178008961039 [3] FELIACHI A., I.E.E.E. Trans. autom. Control 26 pp 586– (1981) · Zbl 0477.93048 · doi:10.1109/TAC.1981.1102653 [4] GRUBER M., I.E.E.E. Trans. autom. Control 14 pp 465– (1969) · doi:10.1109/TAC.1969.1099279 [5] HALE J., Functional Differential Equations (1971) · Zbl 0222.34003 · doi:10.1007/978-1-4615-9968-5 [6] IKEDA M., I.E.E.E. Trans. autom. Control 24 pp 369– (1979) · Zbl 0399.93037 · doi:10.1109/TAC.1979.1102025 [7] KAMEN E. W., I.E.E.E. Trans. autom. Control 27 pp 367– (1982) · Zbl 0517.93047 · doi:10.1109/TAC.1982.1102916 [8] KWON W. H., I.E.E.E. Trans. autom. Control 25 pp 266– (1980) · Zbl 0438.93055 · doi:10.1109/TAC.1980.1102288 [9] MORI T., Automatica 19 pp 571– (1983) · Zbl 0544.93055 · doi:10.1016/0005-1098(83)90013-4 [10] PATEL N. K., Int. J. Control 36 pp 303– (1982) · Zbl 0482.93046 · doi:10.1080/00207178208932894 [11] PATEL R. V., Multivariable System Theory and Design (1982) · Zbl 0475.93005 [12] THOWSEN A., Int. J. Systems Sci. 12 pp 1485– (1981) · Zbl 0504.93049 · doi:10.1080/00207728108963833 [13] WATANABE K., I.E.E.E. Trans. autom. Control 28 pp 506– (1983) · Zbl 0506.93027 · doi:10.1109/TAC.1983.1103258 [14] Wu W. T., Int. J. Control 38 pp 211– (1983) · Zbl 0511.93040 · doi:10.1080/00207178308933069 [15] ZEMANIAN A. H., Distribution Theory and Transform Analysis (1965) · Zbl 0127.07201 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.