×

Gap solitons in fermion superfluids. (English) Zbl 1187.82141

The authors consider the existence of stable gap solitons, supported by 1D, 2D or 3D optical lattice, in the DFG and BCS superfluid formed by a gas of fermion atoms with weak attraction between atoms with opposite orientations of the spin. The analysis is based on the combination of variational approximation and numerical solutions of the time-dependent equations, with the aim to construct families of stable fundamental gap solitons on one and two dimensions.

MSC:

82D50 Statistical mechanics of superfluids
37K40 Soliton theory, asymptotic behavior of solutions of infinite-dimensional Hamiltonian systems
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Abdullaev, F.Kh.; Baizakov, B.B.; Darmanyan, S.A.; Konotop, V.V.; Salerno, M., Nonlinear excitations in arrays of bose – einstein condensates, Phys. rev. A, 64, 043606, (2001)
[2] Abdullaev, F.Kh.; Gammal, A.; Kamchatnov, A.M.; Tomio, L., Dynamics of bright matter wave solitons in a bose – einstein condensate, Int. J. mod. phys. B, 19, 3415-3473, (2005) · Zbl 1112.82318
[3] Abdullaev, F.Kh.; Salerno, M., Gap-townes solitons and localized excitations in low-dimensional bose – einstein condensates in optical lattices, Phys. rev. A, 72, 033617, (2005)
[4] Adhikari, S.K., Stabilization of bright solitons and vortex solitons in a trapless three-dimensional bose – einstein condensate by temporal modulation of the scattering length, Phys. rev. A, 69, 063613, (2004)
[5] Adhikari, S.K., Fermionic bright soliton in a boson – fermion mixture, Phys. rev. A, 72, 053608, (2005)
[6] Adhikari, S.K., Bright solitons and soliton trains in a fermion – fermion mixture, Eur. phys. J. D, 40, 157-160, (2006)
[7] Adhikari, S.K., Formation of bright solitons and soliton trains in a fermion – fermion mixture by modulational instability, J. phys. A, 40, 2673-2687, (2007) · Zbl 1111.81068
[8] Adhikari, S.K., Superfluid fermi – fermi mixture: phase diagram, stability, and soliton formation, Phys. rev. A, 76, 053609, (2007)
[9] Adhikari, S.K.; Malomed, B.A., Tightly bound gap solitons in a Fermi gas, Europhys. lett., 79, 50003, (2007)
[10] Adhikari, S.K.; Malomed, B.A., Gap solitons in a model of a superfluid fermion gas in optical lattices, Physica D, 238, 1402-1412, (2009) · Zbl 1167.82373
[11] Adhikari, S.K.; Muruganandam, P., Bose – einstein condensation dynamics from the numerical solution of the gross – pitaevskii equation, J. phys. B, 35, 2831-2843, (2002)
[12] Adhikari, S.K.; Salasnich, L., One-dimensional superfluid bose – fermi mixture: mixing, demixing, and bright solitons, Phys. rev. A, 76, 023612, (2007)
[13] Alfimov, G.L.; Konotop, V.V.; Pacciani, P., Stationary localized modes of the quintic nonlinear Schrödinger equation with a periodic potential, Phys. rev. A, 75, 023624, (2007)
[14] Baizakov, B.B.; Konotop, V.V.; Salerno, M., Regular spatial structures in arrays of bose – einstein condensates induced by modulational instability, J. phys. B, 35, 5115-5119, (2002)
[15] Baizakov, B.B.; Malomed, B.A.; Salerno, M., Matter-wave solitons in radially periodic potentials, Phys. rev. E, 74, 066615, (2006)
[16] Bludov, Yu.V.; Santhanam, J.; Kenkre, V.M.; Konotop, V.V., Matter waves of bose – fermi mixtures in one-dimensional optical lattices, Phys. rev. A, 74, 043620, (2006)
[17] Brazhnyi, V.A.; Konotop, V.V., Theory of nonlinear matter waves in optical lattices, Mod. phys. lett. B, 18, 627-651, (2004) · Zbl 1099.35524
[18] Chen, Q.J.; Stajic, J.; Tan, S.; Levin, K., BCS-BEC crossover: from high temperature superconductors to ultracold superfluids, Phys. rep., 412, 1-88, (2005)
[19] Cornish, S.L.; Thompson, S.T.; Wieman, C.E., Formation of bright matter-wave solitons during the collapse of attractive bose – einstein condensates, Phys. rev. lett., 96, 170401, (2006)
[20] Eiermann, B.; Anker, Th.; Albiez, M.; Taglieber, M.; Treutlein, P.; Marzlin, K.-P.; Oberthaler, M.K., Bright bose – einstein gap solitons of atoms with repulsive interaction, Phys. rev. lett., 92, 230401, (2004)
[21] Fetter, A.L.; Walecka, Quantum theory of many particle systems, (1971), McGraw Hill New York
[22] Gubeskys, A.; Malomed, B.A.; Merhasin, I.M., Alternate solitons: nonlinearly-managed one- and two-dimensional solitons in optical lattices, Stud. appl. math., 115, 255-277, (2005) · Zbl 1145.82329
[23] Gubeskys, A.; Malomed, B.A.; Merhasin, I.M., Two-component gap solitons in two- and one-dimensional bose – einstein condensate, Phys. rev. A, 73, 023607, (2006)
[24] Hilligsø e, K.M.; Oberthaler, M.K.; Marzlin, K.-P., Stability of gap solitons in a bose – einstein condensate, Phys. rev. A, 66, 063605, (2002)
[25] Huang, K.; Yang, C.N., Quantum-mechanical many-body problem with hard-sphere interaction, Phys. rev., 105, 767-775, (1957) · Zbl 0077.20905
[26] Inouye, S.; Andrews, M.R.; Stenger, J.; Miesner, H.J.; Stamper-Kurn, D.M.; Ketterle, W., Observation of Feshbach resonances in a bose – einstein condensate, Nature, 392, 151-154, (1998)
[27] Karpiuk, T.; Brewczyk, K.; Ospelkaus-Schwarzer, S.; Bongs, K.; Gajda, M.; Rzazewski, K., Soliton trains in bose – fermi mixtures, Phys. rev. lett., 93, 100401, (2004)
[28] Kartashov, Y.V.; Carretero-González, R.; Malomed, B.A.; Vysloukh, V.A.; Torner, L., Multipole-mode solitons in Bessel optical lattices, Opt. exp., 13, 10703-10710, (2005)
[29] Kartashov, Y.V.; Vysloukh, V.A.; Torner, L., Soliton trains in photonic lattices, Opt. exp., 12, 2831, (2004)
[30] Kartashov, Y.V.; Vysloukh, V.A.; Torner, L., Stable ring-profile vortex solitons in Bessel optical lattices, Phys. rev. lett., 94, 043902, (2005)
[31] Khaykovich, L.; Schreck, F.; Ferrari, G.; Bourdel, T.; Cubizolles, J.; Carr, L.D.; Castin, Y.; Salomon, C., Formation of a matter-wave bright soliton, Science, 256, 1290-1293, (2002)
[32] Kolomeisky, E.B.; Newman, T.J.; Straley, J.P.; Qi, X., Low-dimensional Bose liquids: beyond the gross – pitaevskii approximation, Phys. rev. lett., 85, 1146, (2000)
[33] Lieb, E.H.; Seiringer, R.; Yngvason, J., One-dimensional bosons in three-dimensional traps, Phys. rev. lett., 91, 150401, (2003)
[34] Louis, P.J.Y.; Ostrovskaya, E.A.; Savage, C.M.; Kivshar, Y.S., Bose – einstein condensates in optical lattices: band-gap structure and solitons, Phys. rev. A, 67, 013602, (2003)
[35] Malomed, B.A., Variational methods in nonlinear fiber optics and related fields, (), 71-193
[36] Manini, N.; Salasnich, L., Bulk and collective properties of a dilute Fermi gas in the BCS-BEC crossover, Phys. rev. A, 71, 033625, (2005)
[37] Mayteevarunyoo, T.; Malomed, B.A., Stability limits for gap solitons in a bose – einstein condensate trapped in a time-modulated optical lattice, Phys. rev. A, 74, 033616, (2006)
[38] Minguzzi, A.; Succi, S.; Toschi, F.; Tosi, M.P.; Vignolo, P., Numerical methods for atomic quantum gases with applications to bose – einstein condensates and to ultracold fermions, Phys. rep., 395, 223-355, (2004)
[39] Morsch, O.; Oberthaler, M., Dynamics of bose – einstein condensates in optical lattices, Rev. mod. phys., 78, 179-215, (2006)
[40] Pérez-Garca, V.M.; Michinel, H.; Cirac, J.I.; Lewenstein, M.; Zoller, P., Dynamics of bose – einstein condensates: variational solutions of the gross – pitaevskii equations, Phys. rev. A, 56, 1424-1432, (1997)
[41] Pitaevskii, L.P.; Stringari, S., Bose – einstein condensation, (2003), Clarendon Press Oxford and New York · Zbl 1110.82002
[42] Regal, C.A.; Jin, D., Experimental realization of the BCS-BEC crossover with a Fermi gas of atoms, Adv. atom. mol. opt. phys., 54, 1-79, (2007)
[43] Sakaguchi, H.; Malomed, B.A., Dynamics of positive- and negative-mass solitons in optical lattices and inverted traps, J. phys. B, 37, 1443-1459, (2004)
[44] Sakaguchi, H.; Malomed, B.A., Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps, J. phys. B, 37, 2225-2239, (2004)
[45] Salasnich, L.; Adhikari, S.K.; Toigo, F., Self-bound droplet of Bose and Fermi atoms in one dimension: collective properties in Mean-field and tonks – girardeau regimes, Phys. rev. A, 75, 023616, (2007)
[46] Salasnich, L.; Parola, A.; Reatto, L., Effective wave equations for the dynamics of cigar-shaped and disk-shaped Bose condensates, Phys. rev. A, 65, 043614, (2002)
[47] Salerno, M., Matter-wave quantum dots and antidots in ultracold atomic bose – fermi mixtures, Phys. rev. A, 72, 063602, (2005)
[48] Strecker, K.E.; Partridge, G.B.; Truscott, A.G.; Hulet, R.G., Formation and propagation of matter-wave soliton trains, Nature, 417, 150-153, (2002)
[49] Strecker, K.E.; Partridge, G.B.; Truscott, A.G.; Hulet, R.G., Bright matter wave solitons in bose – einstein condensates, New J. phys., 5, 73, (2003)
[50] Theocharis, G.; Frantzeskakis, D.J.; Carretero-González, R.; Kevrekidis, P.G.; Malomed, B.A., Controlling the motion of dark solitons by means of periodic potentials: application to bose – einstein condensates in optical lattices, Phys. rev. E, 71, 017602, (2005)
[51] Zobay, O.; Pötting, S.; Meystre, P.; Wright, E.M., Creation of gap solitons in bose – einstein condensates, Phys. rev. A, 59, 643-648, (1999)
[52] Cuevas, J.; Malomed, B.A.; Kevrekidis, P.G.; Frantzeskakis, D.J., Solitons in quasi-one-dimensional Bose-Einstein condensates with competing dipolar and local interactions, Phys. rev. A, 79, 053608, (2009)
[53] Efremidis, N.K.; Christodoulides, D.N., Lattice solitons in Bose-Einstein condensates, Phys. rev. A, 67, 063608, (2003)
[54] Muruganandam, P.; Adhikari, S.K., Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap, Comput. phys. commun., 180, 1888-1912, (2009) · Zbl 1353.35002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.