×

zbMATH — the first resource for mathematics

Optimization and data mining in medicine. (English) Zbl 1179.92030
Summary: Mathematical theory of optimization has found many applications in the area of medicine over the last few decades. Several data analysis and decision making problems in medicine can be formulated using optimization and data mining techniques. The significance of the mathematical models is greatly realized in the recent years owing to the growing technological capabilities and the large amounts of data available. We attempt to give a brief overview of some of the most interesting applications of mathematical programming and data mining in medicine. In this overview, we include applications like radiation therapy treatment, microarray data analysis, and computational neuroscience.

MSC:
92C50 Medical applications (general)
65K10 Numerical optimization and variational techniques
90C90 Applications of mathematical programming
Software:
MIGA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Abeyratne R, Kinouchi Y, Oki H, Okada J, Shichijo F, Matsumoto K (1991) Artificial neural networks for source localization in the human brain. Brain Topogr 4(1):3–21 · doi:10.1007/BF01129661
[2] Aleman DM, Glaser D, Romeijn HE, Dempsey JF (2007) A primal-dual interior point algorithm for fluence map optimization in intensity modulated radiation therapy treatment planning. Technical report, Gainesville, Florida: Department of Industrial and Systems Engineering, University of Florida
[3] Aleman DM, Romeijin HE, Dempsey JF (2008) Beam orientation optimization methods in intensity modulated radiation therapy treatment planning. In: Optimization in medicine and biology. Auerbach Publications, pp 223–251
[4] Alves CJS, Pardalos PM, Vicente LN (eds) (2008) Optimization in medicine. Springer optimization and its applications, vol 12. Springer, Berlin
[5] Bensmail H, Semmes OJ, Haoudi A (2007) Clustering proteomics data using Bayesian principal component analysis clustering proteomics data using Bayesian principal component analysis. In: Data mining in biomedicine. Springer optimization and its applications, vol 7. Springer, Berlin, pp 339–362
[6] Busygin S, Pardalos PM (2007) Exploring microarray data with correspondence analysis. In: Data mining in biomedicine. Springer optimization and its applications, vol 7. Springer, Berlin, pp 25–37
[7] Busygin S, Prokopyev OA, Pardalos PM (2005) Feature selection for consistent biclustering via fractional 0–1 programming. J Comb Optim 10:7–21 · Zbl 1123.90073 · doi:10.1007/s10878-005-1856-y
[8] Busygin S, Prokopyev O, Pardalos PM (2007) Biclustering in data mining. Comput Oper Res 35(9):2964–2987 · Zbl 1144.68309 · doi:10.1016/j.cor.2007.01.005
[9] Chaovalitwongse W (2003) Optimization and dynamical approaches in nonlinear time series analysis with application in bioengineering. PhD thesis, University of Florida
[10] Cheng Y, Church GM (2000) Biclustering of expression data. In: Proceedings of the eighth international conference on intelligent system for molecular biology, pp 93–103
[11] Dhillon IS (2001) Co-clustering documents and words using bipartite spectral graph partitioning. In: Proceedings of the seventh ACM SIGKDD international conference on knowledge discovery and data mining, pp 269–274
[12] Fan N, Boyko N, Pardalos PM (2010) Recent advances of data biclustering with application in computational neuroscience. Springer, Berlin (in press)
[13] Floudas C, Pardalos PM (eds) (2000) Optimization in computational chemistry and molecular biology. Kluwer Academic, Dordrecht · Zbl 0936.00053
[14] Gorodnitsky IF, George JS, Rao BD (1995) Neuromagnetic source imaging with FOCUSS: a recursive weighted minimum norm algorithm. Electroencephalogr Clin Neurophysiol, pp 231–251
[15] Intensity Modulated Radiation Therapy Collaborative Working Group (2001) Intensity modulated radiotherapy: current status and issues of interest. Int J Radiat Oncol Biol Phys 51:880–914 · doi:10.1016/S0360-3016(01)01749-7
[16] Hallez H, Vanrumste B, Grech R, Muscat J, De Clercq W, Vergult A, D’Asseler Y, Camilleri KP, Fabri SG, Van Huffel S, Lemahieu I (2007) Review on solving the forward problem in EEG source analysis. J NeuroEng Rehabil 4(46)
[17] Iasemidis LD (1990) On the dynamics of the human brain in temporal lobe epilepsy. PhD thesis, University of Michigan, Ann Arbor
[18] Jiang T, Li X, Kruggel F (2000) Global optimization approaches to MEG source localization. pp 223–230
[19] Kalinowski T (2008) Multileaf collimator shape matrix decomposition. In: Optimization in medicine and biology. Auerbach Publications, pp 253–286
[20] Kamath S, Sahni S, Palta J, Ranka S, Lim J (2009) Algorithms for sequencing multileaf collimator. In: Handbook of optimization in medicine. Springer optimization and its applications, vol 26. Springer, Berlin, pp 223–242
[21] Kluger Y, Basri R, Chang JT, Gerstein M (2003) Spectral biclustering of microarray data: coclustering genes and conditions. Genome Res 13:703–716 · doi:10.1101/gr.648603
[22] Küfer KH, Monz M, Scherrer A, Süss P, Alonso F, Azizi Sultan AS, Bortfeld T, Thieke C (2009) Multicriteria optimization in intensity modulated radiotherapy planning. In: Handbook of optimization in medicine. Springer optimization and its applications, vol 26. Springer, Berlin, pp 123–167
[23] Kundakcioglu OE, Pardalos PM (2009) The complexity of feature selection for consistent biclustering. In: Chaovalitwongse, WA, Butenko, S, Pardalos, PM (eds) Clustering challenges in biological networks, pp 257–266
[24] Legras J, Legras B, Lambert J (1982) Software for linear and non-linear optimization in external radiotherapy. Comput Programs Biomed 15:223–242
[25] Lim GJ (2008) Introduction to radiation therapy planning optimization. In: Optimization in medicine and biology. Auerbach Publications, pp 197–221
[26] Lim GJ (2009) Optimization models and computational approaches for three-dimensional conformal radiation treatment planning. In: Handbook of optimization in medicine. Springer optimization and its applications, vol 26. Springer, Berlin, pp 53–81
[27] Lim GJ, Lee EK (eds) (2008) Optimization in medicine and biology. Auerbach Publications
[28] Lim GJ, Ferris MC, Wright SJ, Shepard DM, Earl MA (2007) An optimization framework for conformal radiation treatment planning. INFORMS J Comput 19(3):366–380 · Zbl 1241.90199 · doi:10.1287/ijoc.1060.0179
[29] Madeira SC, Oliveira AL (2004) Biclustering algorithms for biological data analysis: a survey. IEEE/ACM Trans Comput Biol Bioinform 1:24–45 · Zbl 05103330 · doi:10.1109/TCBB.2004.2
[30] McNay D, Michielssen E, Rogers RL, Taylor SA, Akhtari M, Sutherling WW (1996) Multiple source localization using genetic algorithms. J Neurosci Methods 64(2):163–172 · doi:10.1016/0165-0270(95)00122-0
[31] Miga MI, Kerner TE, Darcey TM (2002) Source localization using a current-density minimization approach. Biomed Eng, IEEE Trans Biomed Eng 49(7):743–745 · doi:10.1109/TBME.2002.1010860
[32] Milton J, Jung P (eds) (2003) Epilepsy as a dynamic disease. Springer, Berlin · Zbl 1058.92027
[33] Mondaini RP, Pardalos PM (eds) (2008) Mathematical modelling of biosystems, vol 102. Springer, Berlin · Zbl 1134.92001
[34] Mormann F, Andrzejak RG, Elger CE, Lehnertz K (2007) Seizure prediction: the long and winding road. Brain 130(2):314–333 · doi:10.1093/brain/awl241
[35] Pardalos PM, Hansen P (eds) (2008) Data mining and mathematical programming. American Mathematical Society, Providence
[36] Pardalos PM, Principe JC (eds) (2002) Biocomputing. Biocomputing, vol 1. Springer, Berlin
[37] Pardalos PM, Romeijn HE (eds) (2009) Handbook of optimization in medicine. Springer optimization and its applications, vol 26. Springer, Berlin · Zbl 1157.90004
[38] Pardalos PM, Yatsenko VA (2006) Optimization approach to the estimation and control of Lyapunov exponents. J Optim Theory Appl 128:29–48 · Zbl 1121.93061 · doi:10.1007/s10957-005-7554-1
[39] Pardalos PM, Iasemidis L, Shiau DS, Sackellares JC, Chaovalitwongse W (2003a) Prediction of human epileptic seizures based on optimization and phase changes of brain electrical activity. Optim Methods Softw 18(1):81–104 · Zbl 1050.92032 · doi:10.1080/10556780310001623110
[40] Pardalos PM, Iasemidis L, Shiau DS, Sackellares V, Yatsenko J, Chaovalitwongse W (2003b) Analysis of EGG data using optimization, statistics, and dynamical systems techniques. Comput Stat Data Anal 44:391–408 · Zbl 1429.62584 · doi:10.1016/S0167-9473(03)00027-6
[41] Pardalos PM, Chaovalitwongse W, Iasemidis LD, Sackellares JC, Shiau DS, Carney PR, Prokopyev OA, Yatsenko VA (2004a) Seizure warning algorithm based on optimization and nonlinear dynamics. Math Program 101(2):365–385 · Zbl 1055.92031 · doi:10.1007/s10107-004-0529-4
[42] Pardalos PM, Sackellares C, Carney P, Iasemidis L (eds) (2004b) Quantitative neuroscience. Kluwer Academic, Dordrecht
[43] Pardalos PM, Sackellares JC, Carney PR, Iasemidis LD (eds) (2004c) Quantitative neuroscience models, algorithms, diagnostics, and therapeutic applications. Kluwer Academic, Dordrecht
[44] Pardalos PM, Boginski V, Vazakopoulos A (eds) (2007) Data mining in biomedicine. Springer optimization and its applications, vol 7. Springer, Berlin · Zbl 1130.92034
[45] Pascual-Marqui RD (1999) Review of methods for solving the EEG inverse problem. Int J Bioelectromagn 1:75–86
[46] Pugachev A, Xing L (2001) Pseudo beam’s-eye-view as applied to beam orientation selection in intensity-modulated radiation therapy. Int J Radiat Oncol, Biol, Phys 51:1361–1370 · doi:10.1016/S0360-3016(01)01736-9
[47] Reemtsen R, Albert M (2009) Continuous optimization of beamlet intensities for intensity modulated photon and proton radiotherapy. In: Handbook of optimization in medicine. Springer optimization and its applications, vol 26. Springer, Berlin, pp 83–122
[48] Rege M, Dong M, Fotouhi F (2008) Bipartite isoperimetric graph partitioning for data co-clustering. Data Min Knowl Discov 16(3):276–312 · doi:10.1007/s10618-008-0091-4
[49] Robert C, Gaudy JF, Limoge A (2002) Electroencephalogram processing using neural networks. Clin Neurophysiol 113(5):694–701 · doi:10.1016/S1388-2457(02)00033-0
[50] Romeijn HE, Dempsey JF (2008) Intensity modulated radiation therapy treatment plan optimization. TOP Off J Span Soc Stat Oper Res 16(2):215–243 · Zbl 1154.90019
[51] Sackellares JC (2008) Seizure prediction. Epilepsy Curr 8(3):55–59 · doi:10.1111/j.1535-7511.2008.00236.x
[52] Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series. Phys Rev Lett 55:1082–1085 · doi:10.1103/PhysRevLett.55.1082
[53] Santosa B, Conway T, Trafalis T (2007) A hybrid knowledge based-clustering multi-class SVM approach for genes expression analysis. In: Data mining in biomedicine. Springer optimization and its applications, vol 7. Springer, Berlin, pp 262–274
[54] Sclabassi RJ, Sonmez M, Sun M (2001) EEG source localization: a neural network approach. Neurol Res 23(5):457–464 · doi:10.1179/016164101101198848
[55] Seref O, Kundakcioglu OE, Pardalos PM (eds) (2008) Data mining, systems analysis, and optimization in biomedicine, vol 953. Springer, Berlin
[56] Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8):888–905 · Zbl 05111961 · doi:10.1109/34.868688
[57] Shiau DS, Luo Q, Gilmore SL, Roper SN, Pardalos PM, Sackellares JC, Iasemidis LD (2000) Epileptic seizures resetting revisited. Epilepsia 41(S7):208–209
[58] Sun M, Sclabassi RJ (2000) The forward EEG solutions can be computed using artificial neural networks. IEEE Trans Biomed Eng 47(8):1044–1050 · doi:10.1109/10.855931
[59] Tanay A, Sharan R, Shamir R (2002) Discovering statistically significant biclusters in gene expression data. Bioinformatics 18(Suppl 1):S136–S144
[60] Tanay A, Sharan R, Shamir R (2005) Biclustering algorithms: a survey. In: Handbook of computational molecular biology. Chapman and Hall/CRC Press, London/Boca Raton, pp 26–1, 26–17
[61] Tun AK, Lye NT, Guanglan Z, Abeyratne UR, Saratchandran P (2000) RBF networks for source localization in quantitative electrophysiology. Crit Rev Biomed Eng 28:463–472
[62] Van Hoey G, De Clercq J, Vanrumste B, Walle R, Lemahieu I, D’Have’ M, Boon P (2000) EEG dipole source localization using artificial neural networks. Phys Med Biol 45:997–1011 · doi:10.1088/0031-9155/45/4/314
[63] Weinstein DM, Zhukov L, Potts G (2000) Localization of multiple deep epileptic sources in a realistic head model via independent component analysis. School of computing technical report UUCS-2000-004, University of Utah
[64] Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov exponents from a time series. Physica D 16:285–317 · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9
[65] Wu TH (1997) A note on a global approach for general 0–1 fractional programming. Eur J Oper Res 101:220–223 · Zbl 0916.90252 · doi:10.1016/S0377-2217(96)00258-5
[66] Xanthopoulos P, Boyko N, Fan N, Pardalos PM (2010) Biclustering: algorithms and application in data mining. In: Wiley of operations research and management science (in press)
[67] Yang J, Wang H, Wang W, Yu P (2003) Enhanced biclustering on expression data. In: Proceeding of the third IEEE conference on bioinformatics and bioengineering, pp 321–327
[68] Zha H, He X, Ding C, Simon H, MGu (2001) Bipartite graph partitioning and data clustering. In Proceedings of the tenth international conference on Information and knowledge management, pp 25–32
[69] Zhukov L, Weinstein D, Johnson CR (2000) Independent component analysis for EEG source localization in realistic head models. Proc IEEE Eng Med Biol Soc, 22nd Ann Int Conf 3(19):87–96
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.