zbMATH — the first resource for mathematics

Design of ultra-low and ultra-flattened dispersion single mode photonic crystal fiber by DE/EDA algorithm. (English) Zbl 1319.78016
Summary: This paper proposes a combination of differential evolution (DE) and estimation of distribution algorithm (EDA) to design photonic crystal fiber structures with desired properties over the C communication band. In order to determine the effective index of propagation of the mode and then, the other properties of structure, a finite difference frequency domain (FDFD) solver is applied. The results revealed that the proposed method is a powerful tool for solving this optimization problem. The optimized PCF exhibits a dispersion of 0.22 ps nm\(^{-1}\) km\(^{-1}\) at \(1.55 \mu \)m wavelength with a variance of \(\pm 0.4\) ps nm\(^{-1}\) km\(^{-1}\) over the C communication band and a nearly zero dispersion slope.
78A60 Lasers, masers, optical bistability, nonlinear optics
78M50 Optimization problems in optics and electromagnetic theory
78M20 Finite difference methods applied to problems in optics and electromagnetic theory
68T05 Learning and adaptive systems in artificial intelligence
Full Text: DOI
[1] DOI: 10.1109/JLT.2006.885258 · doi:10.1109/JLT.2006.885258
[2] Calo G, Presented at the 7th International Conference on Transport Optical Networks, Barcelona, July 3–7, 2005
[3] DOI: 10.1016/j.yofte.2004.12.002 · doi:10.1016/j.yofte.2004.12.002
[4] Pourmahyabadi, M and Mohammad Nejad, S. November 18–20 2008. ”Optimal Confinement Loss Reduction in Photonic Crystal Fiber with Ultra-Flattened Dispersion”. InSymposium on High Capacity Optical Networks & Enabling Technologies, HONET 08,, November 18–20, Malaysia: Penang.
[5] DOI: 10.1016/j.optcom.2004.08.030 · doi:10.1016/j.optcom.2004.08.030
[6] DOI: 10.1016/j.optcom.2006.04.019 · doi:10.1016/j.optcom.2006.04.019
[7] DOI: 10.1364/OPEX.12.001990 · doi:10.1364/OPEX.12.001990
[8] DOI: 10.1364/OPEX.13.003728 · doi:10.1364/OPEX.13.003728
[9] Shahoei H, Design of Flattened-Low Dispersion MII Type Optical Fiber by using DE Algorithm (2008)
[10] DOI: 10.1016/j.ins.2004.06.009 · Zbl 02192602 · doi:10.1016/j.ins.2004.06.009
[11] Rudlof S, Stochastic Hill-Climbing with Learning by Vectors of Normal Distributions, (1997)
[12] Zhu Z, Opt. Express 10 pp 853– (2002)
[13] DOI: 10.1016/j.yofte.2004.08.005 · doi:10.1016/j.yofte.2004.08.005
[14] DOI: 10.1023/B:OQEL.0000015636.20125.7e · doi:10.1023/B:OQEL.0000015636.20125.7e
[15] DOI: 10.1364/OPEX.12.002795 · doi:10.1364/OPEX.12.002795
[16] Pourmahyabadi M, The 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, CSNDSP, (2008)
[17] Pourmahyabadi M, 4th IEEE UZ Regional Chapter International Conference in Central Asia on Internet, The Next Generation of Mobile, Wireless and Optical Communications Networks, (2008)
[18] DOI: 10.1117/12.622153 · doi:10.1117/12.622153
[19] Pourmahyabadi M, 4th International Symposium on High Capacity Optical Networks and Enabling Technologies, (2007)
[20] Zhu Z, Opt. Express 10 pp 853– (2002) · doi:10.1364/OE.10.000853
[21] DOI: 10.1364/OPEX.12.001741 · doi:10.1364/OPEX.12.001741
[22] DOI: 10.1109/LPT.2005.844010 · doi:10.1109/LPT.2005.844010
[23] DOI: 10.1109/LPT.2004.824624 · doi:10.1109/LPT.2004.824624
[24] DOI: 10.1364/OE.9.000687 · doi:10.1364/OE.9.000687
[25] DOI: 10.1016/j.optcom.2006.11.014 · doi:10.1016/j.optcom.2006.11.014
[26] Reeves WH, Opt. Express 10 pp 609– (2002) · doi:10.1364/OE.10.000609
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.